AP Calculus AB and BC: Chapter 9 -Infinite Sequences and Series : 9.3 -The Comparison Test Study Notes

9.3 The Comparison Test

Direct Comparison Test
Let $0<a_n \leq b_n$ for all $n$.
1. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
2. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Limit Comparison Test
If $a_n>0, b_n>0$, and $\lim _{n \rightarrow \infty} \frac{a_n}{b_n}=L$, where $L$ is finite and positive, then both series either converge or both diverge.

Note: When choosing a series for comparison, you can disregard all but the highest powers of $n$ in both the numerator and denominator.

Example 1

  • Determine whether the series is convergent or divergent.

(a) $\sum_{n=2}^{\infty} \frac{n}{n^2-3}$

(b) $\sum_{n=1}^{\infty} \frac{\sin ^2 n}{\sqrt{n^3}+1}$

▶️Answer/Explanation

Solution
(a) $\frac{n}{n^2-3}>\frac{n}{n^2}=\frac{1}{n}$ for all $n \geq 2$.
$\sum_{n=2}^{\infty} \frac{1}{n}$ is divergent harmonic series.
Therefore $\sum_{n=2}^{\infty} \frac{n}{n^2-3}$ is divergent by the Direct Comparison Test.

(b) $\frac{\sin ^2 n}{\sqrt{n^3}+1}=\frac{\sin ^2 n}{n^{3 / 2}+1} \leq \frac{1}{n^{3 / 2}+1}<\frac{1}{n^{3 / 2}}$ for $n \geq 1$.
$\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ is convergent because it is a $p$ – series with $p=3 / 2>1$.
Therefore $\sum_{n=1}^{\infty} \frac{\sin ^2 n}{\sqrt{n^3}+1}$ is convergent by the Direct Comparison Test.

Example 2

  • Determine whether the series is convergent or divergent.
    (a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+4}}$

(b) $\sum_{n=3}^{\infty} \frac{2^n}{3^n+1}$

▶️Answer/Explanation

Solution

(a) Let $a_n=\frac{1}{\sqrt{n^2+4}}$ and $b_n=\frac{1}{n}$.
$
\lim _{n \rightarrow \infty} \frac{a_n}{b_n}=\lim _{n \rightarrow \infty} \frac{1 / \sqrt{n^2+4}}{1 / n}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^2+4}}=1
$
Since $\sum b_n=\sum 1 / n$ is a divergent (harmonic series), the given series diverges by the Limit Comparison Test.

(b) Let $a_n=\frac{2^n}{3^n+1}$ and $b_n=\frac{2^n}{3^n}$
$
\lim _{n \rightarrow \infty} \frac{a_n}{b_n}=\lim _{n \rightarrow \infty} \frac{2^n /\left(3^n+1\right)}{2^n / 3^n}=\lim _{n \rightarrow \infty} \frac{3^n}{3^n+1}=1
$
Since $\sum b_n=\sum \frac{2^n}{3^n}=\sum\left(\frac{2}{3}\right)^n$ is a convergent geometric series, the given series converges by the Limit Comparison Test.

Example 3

  • Which of the following series converge?

I. $\sum_{n=1}^{\infty} \frac{1}{n^2+n+3}$

II. $\sum_{n=1}^{\infty} \frac{\cos ^2 n}{n^2+2}$

III. $\sum_{n=1}^{\infty} \frac{1+4^n}{3^n}$

(A) I only

(B) II only

(C) III only

(D) I and II only

▶️Answer/Explanation

Ans:D

Example 4

  • Which of the following series diverge?

I. $\sum_{n=1}^{\infty} \frac{1}{n !}$

II. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+2}$

III. $\sum_{n=1}^{\infty} \sin \left(\frac{1}{\mathrm{n}}\right)$

(A) I only

(B) II only

(C) II and III only

(D) I, II, and III

▶️Answer/Explanation

Ans:C

Example 5

  • Which of the following series converge?

I. $\sum_{n=1}^{\infty} \frac{n^{3 / 2}}{3 n^3+7}$

II. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^4+1}}$

III. $\sum_{n=1}^{\infty} \frac{n !}{n^n}$

(A) I only

(B) I and II only

(C) I and III only

(D) I, II, and III

▶️Answer/Explanation

Ans:D

Example 6

  • Which of the following series cannot be shown to converge using the limit comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ ?

(A) $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$

(B) $\sum_{n=1}^{\infty} \frac{n}{2^n}$

(C) $\sum_{n=1}^{\infty} \frac{2 n}{2^{n+1} \sqrt{n^2+1}}$

(D) $\sum_{n=1}^{\infty} \frac{2 n^2-3 n}{2^n\left(n^2+n-100\right)}$

▶️Answer/Explanation

Ans:B

Scroll to Top