Home / AP Calculus BC : 10.7 Alternating Series Test  for Convergence- Exam Style questions with Answer- MCQ

AP Calculus BC : 10.7 Alternating Series Test  for Convergence- Exam Style questions with Answer- MCQ

Question

Suppose \(lim_{n→∞}a_n=∞\) and \(a_{n+1}≥ a_{n}> 0\) for all n≥ 1 . Which of the following statements must be true?

A \(∑_{n=1}^{∞}\frac{1}{a_n}\) diverges.

B \(∑_{n=1}^{∞}(−1)^na_n\)  converges.

C \(∑_{n=1}^{∞}\frac{1}{a_n}\)  converges.

D \(∑_{n=1}^{∞}\frac{(-1)^n}{a_n}\) converges.

Answer/Explanation

 

Question 

 Which of the following series converge?

I. \(\sum_{n=1}^{\infty } (-1)^{n+1}\frac{1}{2n+1}\)
II.\( \sum_{n=1}^{\infty }\frac{1}{n}\left ( \frac{3}{2} \right )^{n}\)
III.\(\sum_{n=1}^{\infty }\frac{1}{nlnn}\)

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

Answer/Explanation

Ans:A

Question 

 What are all values of x for which the series \(\sum_{n=1}^{\infty }\frac{x^{n}}{n}\)converges?
(A)\(-1\leq x\leq 1\)                             (B)\(-1<x\leq 1\)                (C)\(-1\leq x<1 \)                     (D)\(-1<x<1\)                                     (E)All real x

Answer/Explanation

Ans:C

 

Question

Which of the following series are convergent?

       I. \(1+\frac{1}{2^2}+\frac{1}{3^2}+………….+\frac{1}{n^2}+……….\)

      II. \(1+\frac{1}{2}+\frac{1}{3}+………….+\frac{1}{n}+……….\)

     III. \(1-\frac{1}{3}+\frac{1}{3^2}+………….+\frac{(-1)^{n+1}}{3^{n-1}}+……….\)

(A) I only   

(B) III only

(C) I and III only

(D) II and III only

(E) I, II, and III

Answer/Explanation

Ans:C

I. convergent: p-series with  p = 2>1
II. divergent: Harmonic series which is known to diverge

Scroll to Top