Home / AP Calculus BC : 7.9 Logistic Models with Differential Equations bc only- Exam Style questions with Answer- MCQ

AP Calculus BC : 7.9 Logistic Models with Differential Equations bc only- Exam Style questions with Answer- MCQ

Question

Which of the following graphs is the solution to the logistic differential equation \(\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{y}{5}(1-\frac{y}{50})\)  with the initial condition y(0) = 100 ?
A
B
C
D

Answer/Explanation

 

Question

The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown above. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?
(A) 500                                         (B) 600                                          (C) 2,400                                          (D) 3,000                                                                     (E) 4,800

Answer/Explanation

Ans:D

 

Question

 The population P ( t) of a species satisfies the logistic differential equation \(\frac{dp}{dt}=P\left ( 2-\frac{P}{5000} \right )\), where the initial population P(0) = 3,000  and t is the time in years. What is \( \lim_{t\rightarrow\infty }P(t)\) ?

(A) 2,500                           (B) 3,000                                          (C) 4,200                                      (D) 5,000                                                              (E) 10,000

Answer/Explanation

Ans:E

As\( lim_{t\rightarrow \infty }\frac{dP}{dt}=0\) for a population satisfying a logistic differential equation, this means that

 

Question

 Let y=f(x) be the solution to the differential equation \(\frac{dy}{dx}=1+2y\) with the initial condition f (0)=1  What is the approximation for f (1) if Euler’s method is used, starting at with a step size of 0.5?

(A)2.5
(B)3.5
(C)4.0
(D)5.5

Answer/Explanation

Scroll to Top