AP Calculus BC: 8.6 Finding the Area Between Curves That Intersect at More Than Two Points – Exam Style questions with Answer- FRQ

Question

A company designs spinning toys using the family of functions \(y = cx\sqrt{4-x^{2}},\) where c is a positive constant. The figure above shows the region in the first quadrant bounded by the x-axis and the graph of \(y = cx\sqrt{4-x^{2}},\) for some c. Each spinning toy is in the shape of the solid generated when such a region is revolved about the x-axis. Both x and y are measured in inches.
(a) Find the area of the region in the first quadrant bounded by the x-axis and the graph of \(y = cx\sqrt{4-x^{2}},\) for c = 6.
(b) It is known that, for \(y = cx\sqrt{4-x^{2}},\frac{dy}{dx}=\frac{c\left ( 4-2x^{2} \right )}{\sqrt{4-x^{2}}}.\) For a particular spinning toy, the radius of the largest cross-sectional circular slice is 1.2 inches. What is the value of c for this spinning toy?
(c) For another spinning toy, the volume is 2π cubic inches. What is the value of c for this spinning toy? 

Answer/Explanation

Ans:

(a)

\(y = 6\times \sqrt{4-x^{2}}=0\)

x = 0,     x = 2

\(A = \int_{0}^{2}6\times \sqrt{4-x^{2}}dx\)                                              u = 4-x2

                                                                                                                                    du = -2xdx

\(A = \int_{4}^{0}-3 \sqrt{u}du=3\int_{0}^{4}u^{\frac{1}{2}}du=3 u^{3/2}\cdot \frac{2}{3}|_{0}^{4}\)

A = 2(43/2 – 03/2) = 2(22.3/2 – 0) = 2(8) = 16

A = 16

(b)

Largest cross section where y is greatest (maximum of y on graph). 

Find max:

\(\frac{dy}{dx}=\frac{c(4-2x^{2})}{\sqrt{4-x^{2}}}=0 \rightarrow c(4-2x^{2})=0\)

                                                                                                                             4 = 2x2

                                                                                                                            \(x = \sqrt{2}\)

At \(x = \sqrt{2}\), y = 1.2 (largest radius of cross-section equals 1.2, which is max y value)

\(y = cx\sqrt{4-x^{2}}\)

\(1.2 = c\sqrt{2}\left ( \sqrt{4-(\sqrt{2})^{2}} \right )=c\sqrt{2}\left ( \sqrt{4-2} \right )=c\sqrt{2}(\sqrt{2})=2c\)

c = 1.2/2 = 0.6      →  c = 0.6

(c)

\(v = \pi \int_{0}^{2}y^{2}dx=\pi \int_{0}^{2}(cx\sqrt{4-x^{2}})^{2}dx = \pi c^{2}\int_{0}^{2}x^{2}(4-x^{2})dx=\pi c^{2}\int_{0}^{2}(4x^{2}-x^{4})dx\)

\(v = \pi c^{2}\left [ \frac{4x^{3}}{3}-\frac{x^{5}}{5}|_{0}^{2} \right ]= \pi c^{2}\left [ \left ( \frac{4(8)}{3}-\frac{32}{5} \right )-(0-0) \right ]\)

\(v = \pi c^{2}\left ( \frac{32(5)}{3(5)}-\frac{32(3)}{5(3)} \right )= \pi c^{2}\left ( \frac{2(32)}{15} \right )== \pi c^{2}\left ( \frac{64}{15} \right )\)

\(2\pi =\pi c^{2}\left ( \frac{64}{15} \right )\)

\(c^{2}=\frac{30}{64}\rightarrow c= \sqrt{\frac{30}{64}}=\frac{\sqrt{30}}{8}\)

Scroll to Top