Question
The matrix A is given by A = \(\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right)\).
(a) Given that A\(^3\) can be expressed in the form A\(^3 = a\)A\(^2 = b\)A \( + c\)I, determine the values of the constants \(a\), \(b\), \(c\).
(b) (i) Hence express A\(^{ – 1}\) in the form A\(^{ – 1} = d\)A\(^2 = e\)A \( + f\)I where \(d,{\text{ }}e,{\text{ }}f \in \mathbb{Q}\).
(ii) Use this result to determine A\(^{ – 1}\).
Answer/Explanation
Markscheme
(a) successive powers of A are given by
A\(^2 = \) \(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right)\) (M1)A1
A\(^3 = \) \(\left( {\begin{array}{*{20}{c}}{24}&{35}&{25}\\{25}&{36}&{29}\\{35}&{51}&{36}\end{array}} \right)\) A1
it follows, considering elements in the first rows, that
\(5a + b + c = 24\)
\(7a + 2b = 35\)
\(6a + b = 25\) M1A1
solving, (M1)
\((a,{\text{ }}b,{\text{ }}c) = (3,{\text{ }}7,{\text{ }}2)\) A1
Note: Accept any other three correct equations.
Note: Accept the use of the Cayley–Hamilton Theorem.
[7 marks]
(b) (i) it has been shown that
A\(^3 = 3\)A\(^2 + 7\)A\( + 2\)I
multiplying by A\(^{ – 1}\), M1
A\(^2 = 3\)A\( + 7\)I\( + 2\)A\(^{ – 1}\) A1
whence
A\(^{ – 1} = 0.5\)A\(^2 – 1.5\)A \( – 3.5\)I A1
(ii) substituting powers of A,
A\(^{ – 1} = 0.5\)\(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right) – 1.5\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right) – 3.5\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\) M1
=\(\left( {\begin{array}{*{20}{c}}{ – 2.5}&{0.5}&{1.5}\\{1.5}&{ – 0.5}&{ – 0.5}\\{0.5}&{0.5}&{ – 0.5}\end{array}} \right)\) A1
Note: Follow through their equation in (b)(i).
Note: Line (ii) of (ii) must be seen.
[5 marks]
Question
A matrix M is called idempotent if M\(^2 = \) M.
The idempotent matrix N has the form
N \( = \left( {\begin{array}{*{20}{c}} a&{ – 2a} \\ a&{ – 2a} \end{array}} \right)\)
where \(a \ne 0\).
(i) Explain why M is a square matrix.
(ii) Find the set of possible values of det(M).
(i) Find the value of \(a\).
(ii) Find the eigenvalues of N.
(iii) Find corresponding eigenvectors.
Answer/Explanation
Markscheme
(i) M\(^2 = \) MM only exists if the number of columns of M equals the number of rows of M R1
hence M is square AG
(ii) apply the determinant function to both sides M1
\(\det (\)M\(^2) = \det (\)M\()\)
use the multiplicative property of the determinant
\(\det (\)M\(^2) = \det (\)M\(){\text{ }}\det (\)M\() = \det (\)M\()\) (M1)
hence \(\det (\)M\() = 0\) or 1 A1
[4 marks]
(i) attempt to calculate N\(^2\) M1
obtain \(\left( {\begin{array}{*{20}{c}} { – {a^2}}&{2{a^2}} \\ { – {a^2}}&{2{a^2}} \end{array}} \right)\) A1
equating to N M1
to obtain \(a = – 1\) A1
(ii) N \( = \left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\)
N \( – \lambda \)I \( = \left( {\begin{array}{*{20}{c}} { – 1 – \lambda }&2 \\ { – 1}&{2 – \lambda } \end{array}} \right)\) M1
\(( – 1 – \lambda )(2 – \lambda ) + 2 = 0\) (A1)
\({\lambda ^2} – \lambda = 0\) (A1)
\(\lambda \) is 1 or 0 A1
(iii) let \(\lambda = 1\)
to obtain \(\left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right){\text{ or }}\left( {\begin{array}{*{20}{c}} { – 2}&2 \\ { – 1}&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right)\) M1
hence eigenvector is \(\left( {\begin{array}{*{20}{c}} x \\ x \end{array}} \right)\) A1
let \(\lambda = 0\)
to obtain \(\left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right)\) M1
hence eigenvector is \(\left( {\begin{array}{*{20}{c}} {2y} \\ y \end{array}} \right)\) A1
Note: Accept specific eigenvectors.
[12 marks]
Question
Let A2 = 2A + I where A is a 2 × 2 matrix.
Show that A4 = 12A + 5I.
Let B = \(\left[ {\begin{array}{*{20}{c}}
4&2 \\
1&{ – 3}
\end{array}} \right]\).
Given that B2 – B – 4I = \(\left[ {\begin{array}{*{20}{c}}
k&0 \\
0&k
\end{array}} \right]\), find the value of \(k\).
Answer/Explanation
Markscheme
METHOD 1
A4 = 4A2 + 4AI + I2 or equivalent M1A1
= 4(2A + I) + 4A + I A1
= 8A + 4I + 4A + I
= 12A + 5I AG
[3 marks]
METHOD 2
A3 = A(2A + I) = 2A2 + AI = 2(2A + I) + A(= 5A + 2I) M1A1
A4 = A(5A + 2I) A1
= 5A2 + 2A = 5(2A + I) + 2A
= 12A + 5I AG
[3 marks]
B2 = \(\left[ {\begin{array}{*{20}{c}}
{18}&2 \\
1&{11}
\end{array}} \right]\) (A1)
\(\left[ {\begin{array}{*{20}{c}}
{18}&2 \\
1&{11}
\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}
4&2 \\
1&{ – 3}
\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}
4&0 \\
0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{10}&0 \\
0&{10}
\end{array}} \right]\) (A1)
\( \Rightarrow k = 10\) A1
[3 marks]
Question
By considering the images of the points (1, 0) and (0, 1),
determine the 2 × 2 matrix P which represents a reflection in the line \(y = \left( {{\text{tan}}\,\theta } \right)x\).
determine the 2 × 2 matrix Q which represents an anticlockwise rotation of θ about the origin.
Describe the transformation represented by the matrix PQ.
A matrix M is said to be orthogonal if M TM = I where I is the identity. Show that Q is orthogonal.
Answer/Explanation
Markscheme
(M1)
using the transformation of the unit square:
\(\left( \begin{gathered}
1 \hfill \\
0 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,2\theta } \\
{{\text{sin}}\,2\theta }
\end{array}} \right)\) and \(\left( \begin{gathered}
0 \hfill \\
1 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{{\text{sin}}\,2\theta } \\
{ – {\text{cos}}\,2\theta }
\end{array}} \right)\) (M1)
hence the matrix P is \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,2\theta } \\
{{\text{sin}}\,2\theta }
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,2\theta } \\
{ – {\text{cos}}\,2\theta }
\end{array}} \right)\) A1
[3 marks]
using the transformation of the unit square:
\(\left( \begin{gathered}
1 \hfill \\
0 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}} \right)\) and \(\left( \begin{gathered}
0 \hfill \\
1 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{ – {\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\) (M1)
hence the matrix Q is \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{ – {\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\) A1
[2 marks]
PQ = \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta \,{\text{cos}}\,2\theta + {\text{sin}}\,\theta \,{\text{sin}}\,2\theta } \\
{ – {\text{cos}}\,2\theta \,{\text{sin}}\,\theta + \,{\text{sin}}\,2\theta \,{\text{cos}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta \,{\text{sin}}\,2\theta \, – {\text{sin}}\,\theta \,{\text{cos}}\,2\theta } \\
{ – {\text{sin}}\,\theta \,{\text{sin}}\,2\theta – {\text{cos}}\,\theta \,{\text{cos}}\,2\theta \,}
\end{array}} \right)\) M1A1
\( = \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\left( {2\theta – \theta } \right)} \\
{{\text{sin}}\,\left( {2\theta – \theta } \right)}
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,\left( {2\theta – \theta } \right)} \\
{ – {\text{cos}}\,\left( {2\theta – \theta } \right)}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,\theta } \\
{ – {\text{cos}}\,\theta }
\end{array}} \right)\) M1A1
this is a reflection in the line \(y = \left( {{\text{tan}}\,\frac{1}{2}\theta } \right)x\) A1
[5 marks]
Q TQ = \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{ – {\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{ – {\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}
{{\text{co}}{{\text{s}}^2}\,\theta + {\text{si}}{{\text{n}}^2}\,\theta } \\
{ – {\text{sin}}\,\theta \,{\text{cos}}\,\theta + {\text{cos}}\,\theta \,{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{ – {\text{cos}}\,\theta \,{\text{sin}}\,\theta + {\text{cos}}\,\theta \,{\text{sin}}\,\theta } \\
{{\text{si}}{{\text{n}}^2}\,\theta + {\text{co}}{{\text{s}}^2}\,\theta }
\end{array}} \right)\) M1A1
\( = \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)\) AG
[2 marks]
Question
The matrix \(\boldsymbol{A}\) is given by \[\boldsymbol{A} = \left( {\begin{array}{*{20}{c}}
0&1&0\\
2&4&1\\
4&{ – 11}&{ – 2}
\end{array}} \right) .\]
(i) Find the matrices \({\boldsymbol{A}^2}\) and \({\boldsymbol{A}^3}\) , and verify that \({{\boldsymbol{A}}^3} = 2{{\boldsymbol{A}}^2} – {\boldsymbol{A}}\) .
(ii) Deduce that \({{\boldsymbol{A}}^4} = 3{{\boldsymbol{A}}^2} – 2{\boldsymbol{A}}\) .
(i) Suggest a similar expression for \({\boldsymbol{A}^n}\) in terms of \(\boldsymbol{A}\) and \({\boldsymbol{A}^2}\) , valid for \(n \ge 3\) .
(ii) Use mathematical induction to prove the validity of your suggestion.
Answer/Explanation
Markscheme
(i) \({{\boldsymbol{A}}^2} = \left( {\begin{array}{*{20}{c}}
2&4&1 \\
4&7&2 \\
{ – 14}&{ – 26}&{ – 7}
\end{array}} \right)\) A1
\({{\boldsymbol{A}}^3} = \left( {\begin{array}{*{20}{c}}
4&7&2 \\
6&{10}&3 \\
{ – 24}&{ – 41}&{ – 12}
\end{array}} \right)\) A1
\(2{{\boldsymbol{A}}^2} – {\boldsymbol{A}} = 2\left( {\begin{array}{*{20}{c}}
2&4&1 \\
4&7&2 \\
{ – 14}&{ – 26}&{ – 7}
\end{array}} \right) – \left( {\begin{array}{*{20}{c}}
0&1&0 \\
2&4&1 \\
{ – 4}&{ – 11}&{ – 2}
\end{array}} \right)\) M1
\( = \left( {\begin{array}{*{20}{c}}
4&7&2 \\
6&{10}&3 \\
{ – 24}&{ – 41}&{ – 12}
\end{array}} \right) = {{\boldsymbol{A}}^3}\) AG
(ii) \({{\boldsymbol{A}}^4} = {\boldsymbol{A}}{{\boldsymbol{A}}^3}\) M1
\( = {\boldsymbol{A}}(2{{\boldsymbol{A}}^2} – {\boldsymbol{A}})\) A1
\( = 2{{\boldsymbol{A}}^3} – {{\boldsymbol{A}}^2}\)
\( = 2(2{{\boldsymbol{A}}^2} – {\boldsymbol{A}}) – {{\boldsymbol{A}}^2}\) A1
\( = 3{{\boldsymbol{A}}^2} – 2{\boldsymbol{A}}\) AG
Note: Accept alternative solutions that include correct calculation of both sides of the expression.
[6 marks]
(i) conjecture: \({{\boldsymbol{A}}^n} = \left( {n – 1} \right){{\boldsymbol{A}}^2} – \left( {n – 2} \right){\boldsymbol{A}}\) A1
(ii) first check that the result is true for \(n = 3\)
the formula gives \({{\boldsymbol{A}}^3} = 2{{\boldsymbol{A}}^2} – {\boldsymbol{A}}\) which is correct A1
assume the result for \(n = k\) , i.e. M1
\({{\boldsymbol{A}}^k} = (k – 1){{\boldsymbol{{\rm A}}}^2} – (k – 2){\boldsymbol{A}}\)
so
\({{\boldsymbol{A}}^{k + 1}} = {\boldsymbol{A}}\left[ {\left( {k – 1} \right){{\boldsymbol{A}}^2} – \left( {k – 2} \right){\boldsymbol{A}}} \right]\) M1
\( = \left( {k – 1} \right){{\boldsymbol{A}}^3} – \left( {k – 2} \right){{\boldsymbol{A}}^2}\) A1
\( = \left( {k – 1} \right)\left( {2{{\boldsymbol{A}}^2} – {\boldsymbol{A}}} \right) – \left( {k – 2} \right){{\boldsymbol{A}}^2}\) M1
\( = k{{\boldsymbol{A}}^2} – \left( {k – 1} \right){\boldsymbol{A}}\) A1
so true for \(n = k \Rightarrow \) true for \(n = k + 1\) and since true for \(n = 3\) ,
the result is proved by induction R1
Note: Only award the R1 mark if a reasonable attempt at a proof by induction has been made.
[8 marks]