IB DP Further Mathematics – 4.12 HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Show that the set \(S\) of numbers of the form \({2^m} \times {3^n}\) , where \(m,n \in \mathbb{Z}\) , forms a group \(\left\{ {S, \times } \right\}\) under multiplication.

[6]
a.

Show that \(\left\{ {S, \times } \right\}\) is isomorphic to the group of complex numbers \(m + n{\rm{i}}\) under addition, where \(m\), \(n \in \mathbb{Z}\) .

[6]
b.
Answer/Explanation

Markscheme

Closure: Consider the numbers \({2^{{m_1}}} \times {3^{{m_1}}}\) and \({2^{{m_2}}} \times {3^{{n_2}}}\) where     M1

\({m_1},{m_2},{n_1},{n_2}, \in \mathbb{Z}\) . Then,

Product \( = {2^{{m_1} + {m_2}}} \times {3^{{n_1} + {n_2}}}\) which \( \in S\)     A1

Identity: \({2^0} \times {3^0} = 1 \in S\)     A1

Since \(({2^m} \times {3^n}) \times ({2^{ – m}} \times {3^{ – n}}) = 1\) and \({2^{ – m}} \times {3^{ – n}} \in S\)     R1

then \({2^{ – m}} \times {3^{ – n}}\) is the inverse.     A1

Associativity: This follows from the associativity of multiplication.     R1

[6 marks]

a.

Consider the bijection

\(f({2^m} \times {3^n}) = m + n{\rm{i}}\)    (M1)

Then

\(f({2^{{m_1}}} \times {3^{{n_1}}}) \times ({2^{{m_2}}} \times {3^{{n_2}}}) = f({2^{{m_1} + {m_2}}} \times {3^{{n_1} + {n_2}}})\)     M1A1

\( = {m_1} + {m_2} + ({n_1} + {n_2}){\rm{i}}\)     A1

\( = ({m_1} + {n_1}{\rm{i}}) + ({m_2} + {n_2}{\rm{i}})\)     (A1)

\( = f({2^{{m_1}}} \times {3^{{n_1}}}) + f({2^{{m_2}}} \times {3^{{n_2}}})\)     A1

[6 marks]

b.

Question

The set \({{\rm{S}}_1} = \left\{ {2,4,6,8} \right\}\) and \({ \times _{10}}\) denotes multiplication modulo \(10\).

  (i)     Write down the Cayley table for \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) .

  (ii)     Show that \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) is a group.

  (iii)     Show that this group is cyclic.

[8]
a.

Now consider the group \(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) where \({{\rm{S}}_2} = \left\{ {1,9,11,19} \right\}\) and \({{ \times _{20}}}\) denotes multiplication modulo \(20\). Giving a reason, state whether or not \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) and \(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) are isomorphic.

[3]
b.
Answer/Explanation

Markscheme

(i)

     A2

Note: Award A1 for one error. 

(ii)     closure: it is closed because no new elements are formed     A1

identity: \(6\) is the identity element    A1

inverses: \(4\) is self-inverse and (\(2\), \(8\)) form an inverse pair     A1

associativity: multiplication is associative     A1

the four group axioms are satisfied 

(iii)     any valid reason, e.g.

\(2\) (or \(8\)) has order \(4\), or \(2\) (or \(8\)) is a generator     A2 

[8 marks]

a.

the groups are not isomorphic     A1

any valid reason, e.g. \({{\rm{S}}_2}\) is not cyclic or all its elements are self-inverse     R2

[3 marks]

b.

Question

The group \(\left\{ {G, + } \right\}\) is defined by the operation of addition on the set \(G = \left\{ {2n|n \in \mathbb{Z}} \right\}\) .

The group \(\left\{ {H, + } \right\}\) is defined by the operation of addition on the set \(H = \left\{ {4n|n \in \mathbb{Z}} \right\}\) 

Prove that \(\left\{ {G, + } \right\}\) and \(\left\{ {H, + } \right\}\) are isomorphic.

Answer/Explanation

Markscheme

consider the function \(f:G \to H\) defined by \(f(g) = 2g\) where \(g \in G\)     A1

given \({g_1}\), \({g_2} \in G,f({g_1}) = f({g_2}) \Rightarrow 2{g_1} = 2{g_2} \Rightarrow {g_1} = {g_2}\) (injective)     M1

given \(h \in H\) then \(h = 4n\) , so \(f(2n) = h\) and \(2n \in G\) (surjective)     M1

hence f is a bijection     A1

then, for \({g_1}\), \({g_2} \in G\)

\(f({g_1} + {g_2}) = 2({g_1} + {g_2})\)      A1

\(f({g_1}) + f({g_2}) = 2{g_1} + 2{g_2}\)     A1

it follows that \(f({g_1} + {g_2}) = f({g_1}) + f({g_2})\)     R1

which completes the proof that \(\left\{ {G, + } \right\}\) and \(\left\{ {H, + } \right\}\) are isomorphic     AG

[7 marks]

Scroll to Top