IB DP Further Mathematics -4.2 Relations: equivalence relations; equivalence classes HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The relation \(R\) is defined on the set \(\mathbb{Z}\) by \(aRb\) if and only if \(4a + b = 5n\) , where \(a,b,n \in \mathbb{Z}\).

Show that \(R\) is an equivalence relation.

[8]
a.

State the equivalence classes of \(R\) .

[3]
b.
Answer/Explanation

Markscheme

\(4a + b = 5n\) for \(a,b,n \in \mathbb{Z}\)

reflexive:

\(4a + a = 5a\) so \(aRa\) , and \(R\) is reflexive     A1

symmetric:

\(4a + b = 5n\)

\(4b + a = 5b – b + 5a – 4a\)     M1

\( = 5b + 5a – (4a + b)\)     A1

\( = 5m\) so \(bRa\) , and \(R\) is symmetric     A1

transitive:

\(4a + b = 5n\)     M1

\(4b + c = 5k\)     M1

\(4a + 5b + c = 5n + 5k\)     A1

\(4a + c = 5(n + k – b)\) so \(aRc\) , and \(R\) is transitive     A1

therefore \(R\) is an equivalence relation     AG

[8 marks]

a.

equivalence classes are

\(\left\{ { \ldots , – 10, – 5,0,5,10,\left.  \ldots  \right\}} \right.\)     (M1)

\(\left\{ { \ldots , – 9, – 4,1,6,11,\left.  \ldots  \right\}} \right.\)

\(\left\{ { \ldots , – 8, – 3,2,7,12,\left.  \ldots  \right\}} \right.\)

\(\left\{ { \ldots , – 7, – 2,3,8,13,\left.  \ldots  \right\}} \right.\)

\(\left\{ { \ldots , – 6, – 1,4,9,14,\left.  \ldots  \right\}} \right.\)

or \(\left\{ {\left\langle 0 \right\rangle ,\left\langle 1 \right\rangle ,\left\langle 2 \right\rangle ,\left\langle 3 \right\rangle ,\left. {\left\langle 4 \right\rangle } \right\}} \right.\)     A2

Note: Award A2 for all classes, A1 for at least 2 correct classes.

[3 marks]

b.

Question

Let S be the set of matrices given by

\(\left[ \begin{array}{l}
a\\
c
\end{array} \right.\left. \begin{array}{l}
b\\
d
\end{array} \right]\) ; \(a,b,c,d \in \mathbb{R}\), \(ad – bc = 1\)

The relation \(R\) is defined on \(S\) as follows. Given \(\boldsymbol{A}\) , \(\boldsymbol{B} \in S\) , \(\boldsymbol{ARB}\) if and only if there exists \(\boldsymbol{X} \in S\) such that \(\boldsymbol{A} = \boldsymbol{BX}\) .

Show that \(R\) is an equivalence relation.

[8]
a.

The relationship between \(a\) , \(b\) , \(c\) and \(d\) is changed to \(ad – bc = n\) . State, with a reason, whether or not there are any non-zero values of \(n\) , other than \(1\), for which \(R\) is an equivalence relation.

[2]
b.
Answer/Explanation

Markscheme

since \(\boldsymbol{A} = \boldsymbol{AI}\) where \(\boldsymbol{I}\) is the identity     A1

and \(\det (\boldsymbol{I}) = 1\) ,     A1

\(R\) is reflexive

\(\boldsymbol{ARB} \Rightarrow \boldsymbol{A} = \boldsymbol{BX}\) where \(\det (\boldsymbol{X}) = 1\)     M1

it follows that \(\boldsymbol{B} = \boldsymbol{A}{\boldsymbol{X}^{ – 1}}\)     A1

and \(\det ({\boldsymbol{X}^{ – 1}}) = \det{(\boldsymbol{X})^{ – 1}} = 1\)     A1

\(R\) is symmetric

\(\boldsymbol{ARB}\) and \(\boldsymbol{BRC} \Rightarrow \boldsymbol{A} = \boldsymbol{BX}\) and \(\boldsymbol{B} = \boldsymbol{CY}\) where \(\det (\boldsymbol{X}) = \det (\boldsymbol{Y}) = 1\)     M1

it follows that \(\boldsymbol{A} = \boldsymbol{CYX}\)     A1

\(\det (\boldsymbol{YX}) = \det (\boldsymbol{Y})\det (\boldsymbol{X}) = 1\)     A1

\(R\) is transitive

hence \(R\) is an equivalence relation     AG

[8 marks]

a.

for reflexivity, we require \(\boldsymbol{ARA}\) so that \(\boldsymbol{A} = \boldsymbol{AI}\) (for all \(\boldsymbol{A} \in S\) )     M1

since \(\det (\boldsymbol{I}) = 1\) and we require \(\boldsymbol{I} \in S\) the only possibility is \(n = 1\)     A1

[2 marks]

b.

Question

Prove that the number \(14 641\) is the fourth power of an integer in any base greater than \(6\).

[3]
a.

For \(a,b \in \mathbb{Z}\) the relation \(aRb\) is defined if and only if \(\frac{a}{b} = {2^k}\) , \(k \in \mathbb{Z}\) .

  (i)     Prove that \(R\) is an equivalence relation.

  (ii)     List the equivalence classes of \(R\) on the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

[8]
b.
Answer/Explanation

Markscheme

\(14641\) (base \(a > 6\) ) \( = {a^4} + 4{a^3} + 6{a^2} + 4a + 1\) ,     M1A1

\( = {(a + 1)^4}\)     A1

this is the fourth power of an integer     AG

[3 marks]

a.

(i)     \(aRa\) since \(\frac{a}{a} = 1 = {2^0}\) , hence \(R\) is reflexive     A1

\(aRb \Rightarrow \frac{a}{b} = {2^k} \Rightarrow \frac{b}{a} = {2^{ – k}} \Rightarrow bRa\)

so R is symmetric     A1

\(aRb\) and \(bRc \Rightarrow \frac{a}{b} = {2^m}\), \(m \in \mathbb{Z}\) and \(bRc \Rightarrow \frac{b}{c} = {2^n}\) , \(n \in \mathbb{Z}\)     M1

\( \Rightarrow \frac{a}{b} \times \frac{b}{c} = \frac{a}{c} = {2^{m + n}}\) , \(m + n \in \mathbb{Z}\)    A1

\( \Rightarrow aRc\) so transitive     R1

hence \(R\) is an equivalence relation     AG 

(ii)     equivalence classes are {1, 2, 4, 8} , {3, 6} , {5, 10} , {7} , {9}     A3

Note: Award A2 if one class missing, A1 if two classes missing, A0 if three or more classes missing.

[8 marks]

b.

Question

The group \(\{ G,{\text{ }} * \} \) has a subgroup \(\{ H,{\text{ }} * \} \). The relation \(R\) is defined, for \(x,{\text{ }}y \in G\), by \(xRy\) if and only if \({x^{ – 1}} * y \in H\).

(a)     Show that \(R\) is an equivalence relation.

(b)     Given that \(G = \{ 0,{\text{ }} \pm 1,{\text{ }} \pm 2,{\text{ }} \ldots \} \), \(H = \{ 0,{\text{ }} \pm 4,{\text{ }} \pm 8,{\text{ }} \ldots \} \) and \( * \) denotes addition, find the equivalence class containing the number \(3\).

Answer/Explanation

Markscheme

(a)     \(\underline {{\text{reflexive}}} \)

\({x^{ – 1}}x = e \in H\)     A1

therefore \(xRx\) and \(R\) is reflexive     R1

\(\underline {{\text{symmetric}}} \)

Note: Accept the word commutative.

let \(xRy\) so that \({x^{ – 1}}y \in H\)     M1

the inverse of \({x^{ – 1}}y\) is \({y^{ – 1}}x \in H\)     A1

therefore \(yRx\) and \(R\) is symmetric     R1

\(\underline {{\text{transitive}}} \)

let \(xRy\) and \(yRz\) so \({x^{ – 1}}y \in H\) and \({y^{ – 1}}z \in H\)     M1

therefore \({x^{ – 1}}y\,{y^{ – 1}}z = {x^{ – 1}}z \in H\)     A1

therefore \(xRz\) and \(R\) is transitive     R1

hence \(R\) is an equivalence relation     AG

[8 marks]

 

(b)     the identity is \(0\) so the inverse of \(3\) is \(-3\)     (R1)

the equivalence class of 3 contains \(x\) where \( – 3 + x \in H\)     (M1)

\( – 3 + x = 4n{\text{ }}(n \in \mathbb{Z})\)     (M1)

\(x = 3 + 4n{\text{ (n}} \in \mathbb{Z})\)     A1

Note: Accept \(\{  \ldots  – 5,{\text{ }} – 1,{\text{ }}3,{\text{ }}7,{\text{ }} \ldots \} \) or \(x \equiv 3(\bmod 4)\).

Note: If no other relevant working seen award A3 for \(\{ 3 + 4n\} \) or \(\{  \ldots  – 5,{\text{ }} – 1,{\text{ }}3,{\text{ }}7,{\text{ }} \ldots \} \) seen anywhere.

[4 marks]

Question

The relations \({\rho _1}\) and \({\rho _2}\) are defined on the Cartesian plane as follows

\(({x_1},{\text{ }}{y_1}){\rho _1}({x_2},{\text{ }}{y_2}) \Leftrightarrow x_1^2 – x_2^2 = y_1^2 – y_2^2\)

\(({x_1},{\text{ }}{y_1}){\rho _2}({x_2},{\text{ }}{y_2}) \Leftrightarrow \sqrt {x_1^2 + x_2^2}  \leqslant \sqrt {y_1^2 + y_2^2} \).

For \({\rho _1}\) and \({\rho _2}\) determine whether or not each is reflexive, symmetric and transitive.

[11]
a.

For each of \({\rho _1}\) and \({\rho _2}\) which is an equivalence relation, describe the equivalence classes.

[2]
b.
Answer/Explanation

Markscheme

\({\rho _1}\)

\(({x_1},{\text{ }}{y_1}){\rho _1}({x_1},{\text{ }}{y_1}) \Rightarrow 0 = 0\;\;\;\)hence reflexive.     R1

\(({x_1},{\text{ }}{y_1}){\rho _1}({x_2},{\text{ }}{y_2}) \Rightarrow x_1^2 – x_2^2 = y_1^2 – y_2^2\)

\( \Rightarrow (x_1^2 – x_2^2) =  – (y_1^2 – y_2^2)\)

\( \Rightarrow x_2^2 – x_1^2 = y_2^2 – y_1^2 \Rightarrow ({x_2},{\text{ }}{y_2}){\rho _1}({x_1},{\text{ }}{y_1})\;\;\;\)hence symmetric     M1A1

\(({x_1},{\text{ }}{y_1}){\rho _1}({x_2},{\text{ }}{y_2}) \Rightarrow x_1^2 – x_2^2 = y_1^2 – y_2^2{\text{ – i}}\)

\(({x_2},{\text{ }}{y_2}){\rho _1}({x_3},{\text{ }}{y_3}) \Rightarrow x_2^2 – x_3^2 = y_2^2 – y_3^2{\text{ – ii}}\)     M1

\({\text{i}} + {\text{ii}} \Rightarrow x_1^2 – x_3^2 = y_1^2 – y_3^2 \Rightarrow ({x_1},{\text{ }}{y_1}){\rho _1}({x_3},{\text{ }}{y_3})\;\;\;\)hence transitive     A1

\({\rho _2}\)

\(({x_1},{\text{ }}{y_1}){\rho _2}({x_1},{\text{ }}{y_1}) \Rightarrow \sqrt {2x_1^2}  \leqslant \sqrt {2y_1^2} \;\;\;\)This is not true in the case of (3,1)

hence not reflexive.     R1

\(({x_1},{\text{ }}{y_1}){\rho _2}({x_2},{\text{ }}{y_2}) \Rightarrow \sqrt {x_1^2 + x_2^2}  \leqslant \sqrt {y_1^2 + y_2^2} \)

\( \Rightarrow \sqrt {x_2^2 + x_1^2}  \leqslant \sqrt {y_2^2\_y_1^2}  \Rightarrow ({x_2},{\text{ }}{x_2}){\rho _2}({x_1},{\text{ }}{y_1})\;\;\;\)hence symmetric.     A1

it is not transitive.     A1

attempt to find a counterexample     (M1)

for example \((1,{\text{ }}0){\rho _2}(0,{\text{ 1)}}\) and \((0,{\text{ }}1){\rho _2}(1,{\text{ 0)}}\)     A1

however, it is not true that \((1,{\text{ }}0){\rho _2}(1,{\text{ 0)}}\)     A1

a.

\({\rho _1}\) is an equivalence relation     A1

the equivalence classes for \({\rho _1}\) form a family of curves of the form

\({y^2} – {x^2} = k\)     A1

b.

Question

Use the Euclidean algorithm to find \(\gcd (162,{\text{ }}5982)\).

[4]
a.

The relation \(R\) is defined on \({\mathbb{Z}^ + }\) by \(nRm\) if and only if \(\gcd (n,{\text{ }}m) = 2\).

(i)     By finding counterexamples show that \(R\) is neither reflexive nor transitive.

(ii)     Write down the set of solutions of \(nR6\).

[7]
b.
Answer/Explanation

Markscheme

\(5982 = 162 \times 36 + 150\)    M1A1

\(162 = 150 \times 1 + 12\)    A1

\(150 = 12 \times 12 + 6\)

\(12 = 6 \times 2 + 0 \Rightarrow \gcd \) is 6     A1

[4 marks]

a.

(i)     for example, \(\gcd (4,{\text{ }}4) = 4\)     A1

\(4 \ne 2\)    R1

so \(R\) is not reflexive     AG

for example

\(\gcd (4,{\text{ }}2) = 2\) and \(\gcd (2,{\text{ }}8) = 2\)     M1A1

but \(\gcd (4,{\text{ }}8) = 4{\text{ }}( \ne 2)\)     R1

so \(R\) is not transitive     AG

(ii)     EITHER

even numbers     A1

not divisible by 6     A1

OR

\(\{ 2 + 6n:n \in \mathbb{N}\} {\text{ }} \cup \{ 4 + 6n:n \in \mathbb{N}\} \)   A1A1

OR

\(2,{\text{ }}4,{\text{ }}8,{\text{ }}10,{\text{ }} \ldots \)    A2

[7 marks]

b.
Scroll to Top