IB DP Further Mathematics -5.6 HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

By evaluating successive derivatives at \(x = 0\) , find the Maclaurin series for \(\ln \cos x\) up to and including the term in \({x^4}\) .

[8]
a.

Consider \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \cos x}}{{{x^n}}}\) , where \(n \in \mathbb{R}\) .

Using your result from (a), determine the set of values of \(n\) for which

  (i)     the limit does not exist;

  (ii)     the limit is zero;

  (iii)     the limit is finite and non-zero, giving its value in this case.

[5]
b.
Answer/Explanation

Markscheme

attempt at repeated differentiation (at least 2)     M1

let \(f(x) = \ln \cos x\) , \(f(0) = 0\)     A1

\(f'(x) = – \tan x\) , \(f'(0) = 0\)     A1

\(f”(x) = – {\sec ^2}x\) , \(f”(0) =  – 1\)     A1

\(f”'(x) = – 2{\sec ^2}x\tan x\) , \(f”'(0) = 0\)     A1

\({f^{iv}}(x) = – 2se{c^4}x – 4se{c^2}xta{n^2}x\) , \({f^{iv}}(0) =  – 2\)       A1

the Maclaurin series is

\(\ln \cos x = – \frac{{{x^2}}}{2} – \frac{{{x^4}}}{{12}} +  \ldots \)     M1A1

Note: Allow follow-through on final A1.

[8 marks]

a.

\(\frac{{\ln \cos x}}{{{x^n}}} = – \frac{{{x^{2 – n}}}}{2} – \frac{{{x^{4 – n}}}}{{12}} +  \ldots \)     (M1)

(i)     the limit does not exist if \(n > 2\)     A1

(ii)     the limit is zero if \(n < 2\)     A1

(iii)     if \(n = 2\) , the limit is \( – \frac{1}{2}\)     A1A1

[5 marks]

b.

Question

(a)     Assuming the Maclaurin series for \({{\text{e}}^x}\), determine the first three non-zero terms in the Maclaurin expansion of \(\frac{{{{\text{e}}^x} – {{\text{e}}^{ – x}}}}{2}\).

(b)     The random variable \(X\) has a Poisson distribution with mean \(\mu \). Show that \({\text{P}}\left( {X \equiv 1(\bmod 2)} \right) = a + b{{\text{e}}^{c\mu }}\) where \(a\), \(b\) and \(c\) are constants whose values are to be found.

Answer/Explanation

Markscheme

(a)     \({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \frac{{{x^5}}}{{5!}} +  \ldots \)

\({{\text{e}}^{ – x}} = 1 – x + \frac{{{x^2}}}{{2!}} – \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} – \frac{{{x^5}}}{{5!}} +  \ldots \)     A1

\(\frac{{{{\text{e}}^x} – {{\text{e}}^{ – x}}}}{2} = x + \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} +  \ldots \)     (M1)A1

Note: Accept any valid (otherwise) method.

[3 marks]

 

(b)     \({\text{P}}\left( {X \equiv 1(\bmod 2)} \right) = {\text{P}}(X = 1,{\text{ }}3,{\text{ }}5,{\text{ }} \ldots )\)     (M1)

\( = {{\text{e}}^{ – \mu }}\left( {\mu  + \frac{{{\mu ^3}}}{{3!}} + \frac{{{\mu ^5}}}{{5!}} +  \ldots } \right)\)     A1

\( = \frac{{{{\text{e}}^{ – \mu }}({{\text{e}}^\mu } – {{\text{e}}^{ – \mu }})}}{2}\)     A1

\( = \frac{1}{2} – \frac{1}{2}{{\text{e}}^{ – 2\mu }}\)     A1

\(\left( {a = \frac{1}{2},{\text{ }}b =  – \frac{1}{2},{\text{ }}c =  – 2} \right)\)

[4 marks]

Question

The function \(f\) is defined by

\[f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ – x}} + 2\cos x}}{4},{\text{ }}x \in \mathbb{R}.\]

The random variable \(X\) has a Poisson distribution with mean \(\mu \).

Show that \({f^{(4)}}x = f(x)\);

[4]
a.i.

By considering derivatives of \(f\), determine the first three non-zero terms of the Maclaurin series for \(f(x)\).

[4]
a.ii.

Write down a series in terms of \(\mu \) for the probability \(p = {\text{P}}[X \equiv 0(\bmod 4)]\).

[2]
b.i.

Show that \(p = {{\text{e}}^{ – \mu }}f(\mu )\).

[1]
b.ii.

Determine the numerical value of \(p\) when \(\mu  = 3\).

[2]
b.iii.
Answer/Explanation

Markscheme

\(f’(x) = \frac{{{{\text{e}}^x} – {{\text{e}}^{ – x}} – 2\sin x}}{4}\)     (A1)

\(f’’(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ – x}} – 2\cos x}}{4}\)     (A1)

\(f’’’(x) = \frac{{{{\text{e}}^x} – {{\text{e}}^{ – x}} + 2\sin x}}{4}\)     (A1)

\({f^{(4)}}(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ – x}} + 2\cos x}}{4} = f(x)\)     AG

[4 marks]

a.i.

therefore,

\(f(0) = 1\) and \({f^{(4)}}(0) = 1\)     (A1)

\(f’(0) = f”(0) = f”'(0) = 0\)     (A1)

the sequence of derivatives repeats itself so the next non-zero derivative is \({f^{(8)}}(0) = 1\)     (A1)

the MacLaurin series is \(1 + \frac{{{x^4}}}{{4!}} + \frac{{{x^8}}}{{8!}}( +  \ldots )\)     (M1)A1

[4 marks]

a.ii.

\(p = {\text{P}}(X = 0) + {\text{P}}(X = 4) + {\text{P}}(X = 8) +  \ldots \)     (M1)

\( = \frac{{{{\text{e}}^{ – \mu }}{\mu ^0}}}{{0!}} + \frac{{{{\text{e}}^{ – \mu }}{\mu ^4}}}{{4!}} + \frac{{{{\text{e}}^{ – \mu }}{\mu ^8}}}{{8!}} +  \ldots \)     A1

[??? marks]

b.i.

\(p = {{\text{e}}^{ – \mu }}\left( {1 + \frac{{{\mu ^4}}}{{4!}} + \frac{{{\mu ^8}}}{{8!}} +  \ldots } \right)\)     A1

\( = {{\text{e}}^{ – \mu }}f(\mu )\)     AG

[??? marks]

b.ii.

\(p = {{\text{e}}^{ – 3}}\left( {\frac{{{{\text{e}}^3} + {{\text{e}}^{ – 3}} + 2\cos 3}}{4}} \right)\)     (M1)

\( = 0.226\)     A1

[??? marks]

b.iii.

Question

The function \(f\) is defined by \(f(x) = {{\rm{e}}^x}\cos x\) .

Show that \(f”(x) = – 2{{\rm{e}}^x}\sin x\) .

[2]
a.

Determine the Maclaurin series for \(f(x)\) up to and including the term in \({x^4}\) .

[5]
b.

By differentiating your series, determine the Maclaurin series for \({{\rm{e}}^x}\sin x\) up to the term in \({x^3}\) .

[4]
c.
Answer/Explanation

Markscheme

\(f'(x) = {{\rm{e}}^x}\cos x – {{\rm{e}}^x}\sin x\)     A1

\(f”(x) = {{\rm{e}}^x}\cos x – {{\rm{e}}^x}\sin x – {{\rm{e}}^x}\sin x – {{\rm{e}}^x}\cos x\)     A1

\( = – 2{{\rm{e}}^x}\sin x\)     AG

[2 marks]

a.

\(f”'(x) = – 2{{\rm{e}}^x}\sin x – 2{{\rm{e}}^x}\cos x\)     A1

\({f^{IV}}(x) = – 4{{\rm{e}}^x}\cos x\)     A1

\(f(0) = 1\), \(f'(0) = 1\) ,\(f”(0) = 0\), \(f”'(0) = – 2\), \({f^{IV}}(0) = – 4\)     (A1)

the Maclaurin series is

\({{\rm{e}}^x}\cos x = 1 + x – \frac{{{x^3}}}{3} – \frac{{{x^4}}}{6} +  \ldots \)     M1A1

Note: Accept multiplication of series method.

[5 marks]

b.

differentiating,

\({{\rm{e}}^x}\cos x – {{\rm{e}}^x}\sin x = 1 – {x^2} – \frac{{2{x^3}}}{3} +  \ldots \)     M1A1

\({{\rm{e}}^x}\sin x = 1 + {x^{}} – \frac{{{x^3}}}{3} +  \ldots  – 1 + {x^2} + \frac{{2{x^3}}}{3} +  \ldots \)     M1

\( = x + {x^2} + \frac{{{x^3}}}{3} +  \ldots \)     A1

[4 marks]

c.
Scroll to Top