IB DP Further Mathematics 6.3 HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Use the Euclidean Algorithm to show that \(275\) and \(378\) are relatively prime.

[5]
a.

Find the general solution to the diophantine equation \(275x + 378y = 1\) .

[7]
b.
Answer/Explanation

Markscheme

\(378 = 1 \times 275 + 103\)     A1

\(275 = 2 \times 103 + 69\)     A1

\(103 = 1 \times 69 + 34\)     A1

\(69 = 2 \times 34 + 1\)     A1

showing that gcd \( = 1\) , i.e. relatively prime.     R1

[5 marks]

a.

Working backwards,

\(1 = 69 – 2 \times (103 – 69)\)     (M1)

\( = 3 \times 69 – 2 \times 103\)     (A1)

\( = 3 \times (275 – 2 \times 103) – 2 \times 103\)

\( = 3 \times 275 – 8 \times 103\)     (A1)

\( = 3 \times 275 – 8 \times (378 – 275)\)

\( = 11 \times 275 – 8 \times 378\)     (A1)

A solution is \(x = 11\) , \(y = – 8\)     (A1)

The general solution is \(x = 11 + 378n\) , \(y =  – 8 – 275n\) where \(n \in \mathbb{Z}\)      M1A1     N6

[7 marks]

b.

Question

Find the general solution to the Diophantine equation \(3x + 5y = 7\).

[5]
a.

Find the values of \(x\) and \(y\) satisfying the equation for which \(x\) has the smallest positive integer value greater than \(50\).

[2]
b.
Answer/Explanation

Markscheme

by any method including trial and error or the Euclidean algorithm, a specific solution is, for example, \(x = 4,{\text{ }}y =  – 1\)     (A1)(A1)

\(3(4) + 5( – 1) = 7\;\;\;\)(equation i)

\(3x + 5y = 7\;\;\;\)(equation ii)

equation ii – equation i: \(3(x – 4) + 5(y + 1) = 0\)

\(\frac{{4 – x}}{5} = \frac{{y + 1}}{3} = N\)     (M1)

\(x = 4 – 5N\)     A1

\(y = 3N – 1\)     A1

a.

smallest positive integer \( > 50\) occurs when \(N =  – 10\)     (M1)

\(x = 54,{\text{ }}y =  – 31\)     A1

b.

Question

Consider the Diophantine equation \(7x – 5y = 1,{\text{ }}x,{\text{ }}y \in \mathbb{Z}\).

Find the general solution to this equation.

[3]
a.

Hence find the solution with minimum positive value of \(xy\).

[2]
b.

Find the solution satisfying \(xy = 2014\).

[3]
c.
Answer/Explanation

Markscheme

one solution is \(x =  – 2,{\text{ }}y =  – 3{\text{ }}\left( {{\text{or }}(3,{\text{ }}4)} \right)\)     (A1)

the general solution is

\(x =  – 2 + 5N,{\text{ }}y =  – 3 + 7N{\text{ }}({\text{or }}x = 3 + 5M,{\text{ }}y = 4 + 7M)\)    M1A1

[3 marks]

a.

a listing of small values of the product     (M1)

\( \Rightarrow x =  – 2,{\text{ }}y =  – 3\) (the least positive value of \(xy\) is 6)     A1

[2 marks]

b.

use of “table” or otherwise to solve

\(35{N^2} – 29N + 6 = 2014{\text{ }}({\text{or }}35{M^2} + 41M + 12 = 2014)\)    (M1)

obtain \(N = 8{\text{ }}({\text{or }}M = 7)\)     (A1)

\(x = 38,{\text{ }}y = 53\)    A1

[3 marks]

c.
Scroll to Top