IBDP Maths analysis and approaches Topic: SL 2.2 Concept of a function, domain, range and graph HL Paper 1

[Maximum mark: 8]

Question:

A function f is defined by f ( x ) = \(x\sqrt{1-x^{2}} where -1\leq x\leq 1.\)
The graph of y = f (x) is shown below.

(a) Show that f is an odd function.
The range of f is a ≤ y ≤ b , where a, b ∈ R.

▶️Answer/Explanation

Ans: attempts to replace x with –x
\(f(-x) = -x\sqrt{1-(-x)^{2}}\)
\(= -x\sqrt{1-(-x)^{2}} \left ( =-f(x) \right )\)

Note: Award M1A1 for an attempt to calculate both f (-x ) and – f (-x) independently, showing that they are equal.
Note: Award M1A0 for a graphical approach including evidence that either the graph is invariant after rotation by 180° about the origin or the graph is invariant after a reflection in the y-axis and then in the x-axis (or vice versa).

so f is an odd function

(b) Find the value of a and the value of b.

▶️Answer/Explanation

Ans: attempts both product rule and chain rule differentiation to find f¢(x)

Note: Award M1 for an attempt to evaluate f(x) at least at one of their f¢(x) = 0 roots.

\(a = -\frac{1}{2} and b = \frac{1}{2}\)
Note: Award A1 for \(-\frac{1}{2}\leq y\leq \frac{1}{2}.\)

Question:

The graph of y = f (x) for -4 ≤ x ≤ 6 is shown in the following diagram.

 
 (a)        Write down the value of

 (i)       f (2) ;

▶️Answer/Explanation

Ans: f(2) = 6

(ii)      ( f o f )(2) .                                                                                                                                                             [2]

▶️Answer/Explanation

Ans: ( f o f ) 2=− 2 [2 marks]

 (b)        Let g(x) = \(\frac{1}{2} f (x) +1\) for -4 ≤ x ≤ 6 . On the axes above, sketch the graph of g .                   [3]

▶️Answer/Explanation

Ans:

Question

Consider the function f , where \(f(x) = \arcsin (\ln x)\).

(a)     Find the domain of f .

▶️Answer/Explanation

Ans: \( – 1 \leqslant \ln x \leqslant 1\)     (M1)

\( \Rightarrow \frac{1}{{\text{e}}} \leqslant x \leqslant {\text{e}}\)     A1A1

 

(b)     Find \({f^{ – 1}}(x)\).
▶️Answer/Explanation

Ans:

\(y = \arcsin (\ln x) \Rightarrow \ln x = \sin y\)     (M1)

\(\ln y = \sin x \Rightarrow y = {{\text{e}}^{\sin x}}\)     (M1)

\( \Rightarrow {f^{ – 1}}(x) = {{\text{e}}^{\sin x}}\)     A1

[6 marks]

Question

a. Consider the functions given below.

\[f(x) = 2x + 3\]\[g(x) = \frac{1}{x},x \ne 0\]

(i)     Find \(\left( {g \circ f} \right)\left( x \right)\) and write down the domain of the function.

▶️Answer/Explanation

Ans: \(\left( {g \circ f} \right)\left( x \right) = \frac{1}{{2x + 3}}\), \(x \ne – \frac{3}{2}\) (or equivalent)     A1

(ii)     Find \(\left( {f \circ g} \right)\left( x \right)\) and write down the domain of the function.[2]
▶️Answer/Explanation

Ans: \(\left( {f \circ g} \right)\left( x \right) = \frac{2}{x} + 3\), \(x \ne 0\) (or equivalent)     A1

[2 marks]

b. Find the coordinates of the point where the graph of \(y = f(x)\) and the graph of \(y = \left( {{g^{ – 1}} \circ f \circ g} \right)(x)\) intersect.[4]
▶️Answer/Explanation

Ans: EITHER

\(f(x) = \left( {{g^{ – 1}} \circ f \circ g} \right)(x) \Rightarrow \left( {f \circ g} \right)\left( x \right)\)     (M1)

\(\frac{1}{{2x + 3}} = \frac{2}{x} + 3\)     A1

OR

\(\left( {{g^{ – 1}} \circ f \circ g} \right)(x) = \frac{1}{{\frac{2}{x} + 3}}\)     A1

\(2x + 3 = \frac{1}{{\frac{2}{x} + 3}}\)     M1

THEN

\(6{x^2} + 12x + 6 = 0\) (or equivalent)     A1

\(x = – 1\), \(y = 1\) (coordinates are (−1, 1) )     A1

[4 marks]

Question

Consider the function \({f_n}(x) = (\cos 2x)(\cos 4x) \ldots (\cos {2^n}x),{\text{ }}n \in {\mathbb{Z}^ + }\).

a. Determine whether \({f_n}\) is an odd or even function, justifying your answer.[2]

▶️Answer/Explanation

Ans: even function     A1

since \(\cos kx = \cos ( – kx)\) and \({f_n}(x)\) is a product of even functions     R1

OR

even function     A1

since \((\cos 2x)(\cos 4x) \ldots  = \left( {\cos ( – 2x)} \right)\left( {\cos ( – 4x)} \right) \ldots \)     R1

Note:     Do not award A0R1.

[2 marks]

b. By using mathematical induction, prove that \({f_n}(x) = \frac{{\sin {2^{n + 1}}x}}{{{2^n}\sin 2x}},{\text{ }}x \ne \frac{{m\pi }}{2}\) where \(m \in \mathbb{Z}\).[8]
▶️Answer/Explanation

Ans: consider the case \(n = 1\)

\(\frac{{\sin 4x}}{{2\sin 2x}} = \frac{{2\sin 2x\cos 2x}}{{2\sin 2x}} = \cos 2x\)     M1

hence true for \(n = 1\)     R1

assume true for \(n = k\), ie, \((\cos 2x)(\cos 4x) \ldots (\cos {2^k}x) = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}\)     M1

Note:     Do not award M1 for “let \(n = k\)” or “assume \(n = k\)” or equivalent.

consider \(n = k + 1\):

\({f_{k + 1}}(x) = {f_k}(x)(\cos {2^{k + 1}}x)\)     (M1)

\( = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}\cos {2^{k + 1}}x\)     A1

\( = \frac{{2\sin {2^{k + 1}}x\cos {2^{k + 1}}x}}{{{2^{k + 1}}\sin 2x}}\)     A1

\( = \frac{{\sin {2^{k + 2}}x}}{{{2^{k + 1}}\sin 2x}}\)     A1

so \(n = 1\) true and \(n = k\) true \( \Rightarrow n = k + 1\) true. Hence true for all \(n \in {\mathbb{Z}^ + }\)     R1

Note:     To obtain the final R1, all the previous M marks must have been awarded.

[8 marks]

c. Hence or otherwise, find an expression for the derivative of \({f_n}(x)\) with respect to \(x\).[3]

▶️Answer/Explanation

Ans: attempt to use \(f’ = \frac{{vu’ – uv’}}{{{v^2}}}\) (or correct product rule)     M1

\({f’_n}(x) = \frac{{({2^n}\sin 2x)({2^{n + 1}}\cos {2^{n + 1}}x) – (\sin {2^{n + 1}}x)({2^{n + 1}}\cos 2x)}}{{{{({2^n}\sin 2x)}^2}}}\)     A1A1

Note:     Award A1 for correct numerator and A1 for correct denominator.

[3 marks]

d. Show that, for \(n > 1\), the equation of the tangent to the curve \(y = {f_n}(x)\) at \(x = \frac{\pi }{4}\) is \(4x – 2y – \pi  = 0\).[8]

▶️Answer/Explanation

Ans: \({f’_n}\left( {\frac{\pi }{4}} \right) = \frac{{\left( {{2^n}\sin \frac{\pi }{2}} \right)\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right) – \left( {\sin {2^{n + 1}}\frac{\pi }{4}} \right)\left( {{2^{n + 1}}\cos \frac{\pi }{2}} \right)}}{{{{\left( {{2^n}\sin \frac{\pi }{2}} \right)}^2}}}\)     (M1)(A1)

\({f’_n}\left( {\frac{\pi }{4}} \right) = \frac{{({2^n})\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right)}}{{{{({2^n})}^2}}}\)     (A1)

\( = 2\cos {2^{n + 1}}\frac{\pi }{4}{\text{ }}( = 2\cos {2^{n – 1}}\pi )\)     A1

\({f’_n}\left( {\frac{\pi }{4}} \right) = 2\)     A1

\({f_n}\left( {\frac{\pi }{4}} \right) = 0\)     A1

Note:     This A mark is independent from the previous marks.

\(y = 2\left( {x – \frac{\pi }{4}} \right)\)     M1A1

\(4x – 2y – \pi  = 0\)     AG

[8 marks]

Scroll to Top