IB DP Maths Topic 2.1 Domain, range; image (value) SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = {x^3} – 4x + 1\) .

Expand \({(x + h)^3}\) .

[2]
a.

Use the formula \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) – f(x)}}{h}\) to show that the derivative of \(f(x)\) is \(3{x^2} – 4\) .

[4]
b.

The tangent to the curve of f at the point \({\text{P}}(1{\text{, }} – 2)\) is parallel to the tangent at a point Q. Find the coordinates of Q.

[4]
c.

The graph of f is decreasing for \(p < x < q\) . Find the value of p and of q.

[3]
d.

Write down the range of values for the gradient of \(f\) .

[2]
e.
Answer/Explanation

Markscheme

attempt to expand     (M1)

\({(x + h)^3} = {x^3} + 3{x^2}h + 3x{h^2} + {h^3}\)     A1     N2

[2 marks]

a.

evidence of substituting \(x + h\)     (M1)

correct substitution     A1

e.g. \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{{{(x + h)}^3} – 4(x + h) + 1 – ({x^3} – 4x + 1)}}{h}\)

simplifying     A1

e.g. \(\frac{{({x^3} + 3{x^2}h + 3x{h^2} + {h^3} – 4x – 4h + 1 – {x^3} + 4x – 1)}}{h}\)

factoring out h     A1

e.g. \(\frac{{h(3{x^2} + 3xh + {h^2} – 4)}}{h}\)

\(f'(x) = 3{x^2} – 4\)     AG     N0

[4 marks]

b.

\(f'(1) = – 1\)    (A1)

setting up an appropriate equation     M1

e.g. \(3{x^2} – 4 = – 1\)

at Q, \(x = – 1,y = 4\) (Q is \(( – 1{\text{, }}4)\))    A1    A1

[4 marks]

c.

recognizing that f is decreasing when \(f'(x) < 0\)     R1

correct values for p and q (but do not accept \(p = 1.15{\text{, }}q = – 1.15\) )     A1A1     N1N1

e.g. \(p = – 1.15{\text{, }}q = 1.15\) ; \( \pm \frac{2}{{\sqrt 3 }}\) ; an interval such as \( – 1.15 \le x \le 1.15\)

[3 marks]

d.

\(f'(x) \ge – 4\) , \(y \ge – 4\) , \(\left[ { – 4,\infty } \right[\)     A2     N2

[2 marks]

e.

Question

Let \(f(x) = \frac{{100}}{{(1 + 50{{\rm{e}}^{ – 0.2x}})}}\) . Part of the graph of \(f\) is shown below.

Write down \(f(0)\) .

[1]
a.

Solve \(f(x) = 95\) .

[2]
b.

Find the range of \(f\) .

[3]
c.

Show that \(f'(x) = \frac{{1000{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) .

[5]
d.

Find the maximum rate of change of \(f\) .

[4]
e.
Answer/Explanation

Markscheme

\(f(0) = \frac{{100}}{{51}}\) (exact), \(1.96\)     A1     N1

[1 mark]

a.

setting up equation     (M1)

eg   \(95 = \frac{{100}}{{1 + 50{{\rm{e}}^{ – 0.2x}}}}\) , sketch of graph with horizontal line at \(y = 95\)

\(x = 34.3\)     A1     N2

[2 marks]

b.

upper bound of \(y\) is \(100\)     (A1)

lower bound of \(y\) is \(0\)     (A1)

range is \(0 < y < 100\)     A1     N3

[3 marks]

c.

METHOD 1

setting function ready to apply the chain rule     (M1)

eg   \(100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 1}}\) 

evidence of correct differentiation (must be substituted into chain rule)     (A1)(A1)

eg   \(u’ = – 100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}\) , \(v’ = (50{{\rm{e}}^{ – 0.2x}})( – 0.2)\) 

correct chain rule derivative     A1

eg   \(f'(x) = – 100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}(50{{\rm{e}}^{ – 0.2x}})( – 0.2)\) 

correct working clearly leading to the required answer     A1

eg   \(f'(x) = 1000{{\rm{e}}^{ – 0.2x}}{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}\) 

\(f'(x) = \frac{{1000{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)     AG     N0

METHOD 2

attempt to apply the quotient rule (accept reversed numerator terms)     (M1)

eg   \(\frac{{vu’ – uv’}}{{{v^2}}}\) , \(\frac{{uv’ – vu’}}{{{v^2}}}\)

evidence of correct differentiation inside the quotient rule     (A1)(A1)

eg   \(f'(x) = \frac{{(1 + 50{{\rm{e}}^{ – 0.2x}})(0) – 100(50{{\rm{e}}^{ – 0.2x}} \times  – 0.2)}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) , \(\frac{{100( – 10){{\rm{e}}^{ – 0.2x}} – 0}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

any correct expression for derivative (\(0\) may not be explicitly seen)     (A1)

eg   \(\frac{{ – 100(50{{\rm{e}}^{ – 0.2x}} \times  – 0.2)}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

correct working clearly leading to the required answer     A1

eg   \(f'(x) = \frac{{0 – 100( – 10){{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) , \(\frac{{ – 100( – 10){{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

\(f'(x) = \frac{{{\rm{1000}}{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)     AG     N0

[5 marks]

d.

METHOD 1

sketch of \(f'(x)\)     (A1)

eg

recognizing maximum on \(f'(x)\)     (M1)

eg dot on max of sketch

finding maximum on graph of \(f'(x)\)     A1

eg   (\(19.6\), \(5\)) , \(x = 19.560 \ldots \)

maximum rate of increase is \(5\)     A1 N2

METHOD 2

recognizing \(f”(x) = 0\)     (M1)

finding any correct expression for  \(f”(x) = 0\)     (A1)

eg   \(\frac{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}( – 200{{\rm{e}}^{ – 0.2x}}) – (1000{{\rm{e}}^{ – 0.2x}})(2(1 + 50{{\rm{e}}^{ – 0.2x}})( – 10{{\rm{e}}^{ – 0.2x}}))}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^4}}}\)

finding \(x = 19.560 \ldots \)     A1

maximum rate of increase is \(5\)     A1     N2

[4 marks]

e.

Question

Let \(f(x) = {x^2} + 2x + 1\) and \(g(x) = x – 5\), for \(x \in \mathbb{R}\).

Find \(f(8)\).

[2]
a.

Find \((g \circ f)(x)\).

[2]
b.

Solve \((g \circ f)(x) = 0\).

[3]
c.
Answer/Explanation

Markscheme

attempt to substitute \(x = 8\)     (M1)

eg\(\,\,\,\,\,\)\({8^2} + 2 \times 8 + 1\)

\(f(8) = 81\)    A1     N2

[2 marks]

a.

attempt to form composition (in any order)     (M1)

eg\(\,\,\,\,\,\)\(f(x – 5),{\text{ }}g\left( {f(x)} \right),{\text{ }}\left( {{x^2} + 2x + 1} \right) – 5\)

\((g \circ f)(x) = {x^2} + 2x – 4\)     A1     N2

[2 marks]

b.

valid approach     (M1)

eg     \(x = \frac{{ – 2 \pm \sqrt {20} }}{2}\), N16/5/MATME/SP2/ENG/TZ0/01.c/M

\(1.23606,{\text{ }} – 3.23606\)

\(x = 1.24,{\text{ }}x =  – 3.24\)     A1A1     N3

[3 marks]

c.

Question

The following diagram shows the graph of a function \(y = f(x)\), for \( – 6 \leqslant x \leqslant  – 2\).

The points \(( – 6,{\text{ }}6)\) and \(( – 2,{\text{ }}6)\) lie on the graph of \(f\). There is a minimum point at \(( – 4,{\text{ }}0)\).

Let \(g(x) = f(x – 5)\).

Write down the range of \(f\).

[2]
a.

On the grid above, sketch the graph of \(g\).

[2]
b.

Write down the domain of \(g\).

[2]
c.
Answer/Explanation

Markscheme

correct interval     A2     N2

eg\(\,\,\,\,\,\)\(0 \leqslant y \leqslant 6,{\text{ }}[0,{\text{ }}6]\), from 0 to 6

[2 marks]

a.

M17/5/MATME/SP2/ENG/TZ2/03.b/M     M1A1     N2

Note:     Award M1 for a horizontal shift of the whole shape, 5 units to the left or right and A1 for the correct graph.

[2 marks]

b.

correct interval     A2     N2

eg\(\,\,\,\,\,\)\( – 1 \leqslant x \leqslant 3,{\text{ }}[ – 1,{\text{ }}3]\), from \( – 1\) to 3

[2 marks]

c.

Question

A rock falls off the top of a cliff. Let \(h\) be its height above ground in metres, after \(t\) seconds.

The table below gives values of \(h\) and \(t\) .

Jane thinks that the function \(f(t) = – 0.25{t^3} – 2.32{t^2} + 1.93t + 106\) is a suitable model for the data. Use Jane’s model to

(i)     write down the height of the cliff;

(ii)    find the height of the rock after 4.5 seconds;

(iii)   find after how many seconds the height of the rock is \(30{\text{ m}}\).

[5]
a(i), (ii) and (iii).

Kevin thinks that the function \(g(t) = – 5.2{t^2} + 9.5t + 100\) is a better model for the data. Use Kevin’s model to find when the rock hits the ground.

[3]
b.

(i)     On graph paper, using a scale of 1 cm to 1 second, and 1 cm to 10 m, plot the data given in the table.

(ii)    By comparing the graphs of f and g with the plotted data, explain which function is a better model for the height of the falling rock.

[6]
c(i) and (ii).
Answer/Explanation

Markscheme

(i) \(106{\text{ m}}\)     A1     N1

(ii) substitute \(t = 4.5\)     M1

\(h = 44.9{\text{ m}}\)     A1     N2

(iii) set up suitable equation     M1

e.g. \(f(t) = 30\)

\(t = 4.91\)     A1     N1

[5 marks]

a(i), (ii) and (iii).

recognizing that height is 0     A1

set up suitable equation     M1

e.g. \(g(t) = 0\)

\(t = 5.39{\text{ secs}}\)     A1     N2

[3 marks]

b.


     A1A2     N3

Note: Award A1 for correct scales on axes, A2 for 5 correct points, A1 for 3 or 4 correct points.

(ii) Jane’s function, with 2 valid reasons     A1R1R1     N3

e.g. Jane’s passes very close to all the points, Kevin’s has the rock clearly going up initially – not possible if rock falls

Note: Although Jane’s also goes up initially, it only goes up very slightly, and so is the better model.

[6 marks]

c(i) and (ii).
Scroll to Top