Home / IBDP Maths analysis and approaches Topic: AHL 2.12 :Polynomial functions and their graphs HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 2.12 :Polynomial functions and their graphs HL Paper 1

Question

Consider the polynomial \(P(x)=3x^{3}+5x^{2}+x-1\)

(a) Show that (x+1)  is a factor or P(x).

(b) Hence, express P(x) as a product of three linear factors.

Now consider the polynomial Q(x)=(x+1)(2x+1).

(c)Express \(\frac{1}{Q(x)}\) in the form \(\frac{A}{x+1}+\frac{B}{2x+1}\), where \(A, B \in \mathbb{Z}\).

(d) Hence, or otherwise, show that \(\frac{1}{(x+1)Q(x)}=\frac{4}{2x+1}-\frac{2}{x+1}-\frac{1}{(x+1)^{2}}\).

(e)Hence, find \(\int \frac{1}{(x+1)^{2}(2x+1)}dx\).

Consider the function defined by \(f(x)=\frac{P(x)}{(x+1)Q(x)}\); where \(x\neq -1, x\neq -\frac{1}{2}\).

(f) Find

(i) \(\displaystyle \lim_{x \to -1}f(x)\);

(ii) \(\displaystyle \lim_{x \to \infty }f(x)\).

▶️Answer/Explanation

Ans:

(a) Substituting x = -1 in the polynomial P(x) as given below, or applying the synthetic division (Horner’s Method) method taking the coefficients of polynomial,  3, 5, 1, -1 and the value of factor x = -1, or by long division, we get that (x+1)  is a factor or P(x)

(b) using long division or synthetic division to divide P(x) by (x+1) we get from previous step, 

\(P(x)=(x+1)(3x^{2}+2x-1)\)

\(=(x+1)(x+1)(3x-1)(=(x+1)^{2}(3x-1))\)

(c)According to the question, \(\frac{1}{Q(x)}\) =

substitute the values of x = \(-1\) and \(-\frac{1}{2}\), we get 

 \(1=-A\) and \(1=\frac{1}{2}B\)

Therefore, \(A=-1\) and \(B=2\)

Therefore, \(\frac{1}{(x+1)(2x+1)}=-\frac{1}{x+1}+\frac{2}{2x+1}\)

(d) Taking the result obtained in (c) forward, according to the question

 

(e) Since,  \(\frac{1}{(x+1)^{2}(2x+1)}\) =

Therefore, 

 

(f) (i) METHOD 1

             By cancelling the factors in numerator and denominator and then substitute \(x=-1\)

           

           METHOD 2

            By expanding denominator, then differentiating numerator and denominator twice and substitute \(x=-1\)

         

    (ii) METHOD 1

           divide all terms by \(x^{3}\)

           

          METHOD 2

           By cancelling the factors and considering coefficients of x or by dividing all terms by x

         

          METHOD 3

          By expanding denominator, then differentiating numerator and denominator three times

         

Question

Consider the quartic equation z4 + 4z3 + 8z2 + 80z + 400 = 0 , z \(\in \mathbb{C}\).

Two of the roots of this equation are a + bi and b + ai , where a , b ∈  \(\mathbb{Z}\)

Find the possible values of a .

▶️Answer/Explanation

 Ans: 

METHOD 1

other two roots are a – bi and b – ai

sum of roots = −4 and product of roots = 400

attempt to set sum of four roots equal to −4 or 4 OR

attempt to set product of four roots equal to 400

a + bi+a −bi+ b + ai +b − ai = − 4

2a + 2b = -4 \((\Rightarrow a+ b = -2)\)

(a+bi)(a-bi)(b+ai)(b-ai)= 400

(a2+b2)2 = 400

a2+b2= 20

attempt to solve simultaneous equations other two roots are

a =2 or a= 4

METHOD 2
other two roots are a-bi and b-ai
(z −(a +bi))(z −(a −bi))(z −(b + ai))(z −(b − ai))(= 0) A1
((z − a)2 + b2 )((z −b)2 + a2 )(= 0)
(z2 − 2az + a2 + b2 )(z2 − 2bz + b2 + a2 )(= 0) A1
Attempt to equate coefficient of z3 and constant with the given quartic equation M1
-2a=2b=4 and (a2+b2)2 = 400
attempt to solve simultaneous equations (M1)
a = 2 or a = −4 A1A1

Question

The function f is defined by \(f(x) = \frac{1}{{4{x^2} – 4x + 5}}\).

Express \(4{x^2} – 4x + 5\) in the form \(a{(x – h)^2} + k\) where a, h, \(k \in \mathbb{Q}\).[2]

a.

The graph of \(y = {x^2}\) is transformed onto the graph of \(y = 4{x^2} – 4x + 5\). Describe a sequence of transformations that does this, making the order of transformations clear.[3]

b.

Sketch the graph of \(y = f(x)\).[2]

c.

Find the range of f.[2]

d.

By using a suitable substitution show that \(\int {f(x){\text{d}}x = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \).[3]

e.

Prove that \(\int_1^{3.5} {\frac{1}{{4{x^2} – 4x + 5}}{\text{d}}x = \frac{\pi }{{16}}} \).[7]

f.
▶️Answer/Explanation

Markscheme

\(4{(x – 0.5)^2} + 4\)     A1A1

Note: A1 for two correct parameters, A2 for all three correct.

[2 marks]

a.

translation \(\left( {\begin{array}{*{20}{c}}
  {0.5} \\
  0
\end{array}} \right)\) (allow “0.5 to the right”)     A1

stretch parallel to y-axis, scale factor 4 (allow vertical stretch or similar)     A1

translation \(\left( {\begin{array}{*{20}{c}}
  0 \\
  4
\end{array}} \right)\) (allow “4 up”)     A1

Note: All transformations must state magnitude and direction.

Note: First two transformations can be in either order.

It could be a stretch followed by a single translation of \(\left( {\begin{array}{*{20}{c}}
  {0.5} \\
  4
\end{array}} \right)\). If the vertical translation is before the stretch it is \(\left( {\begin{array}{*{20}{c}}
  0 \\
  1
\end{array}} \right)\).

 

[3 marks]

b.

general shape (including asymptote and single maximum in first quadrant),     A1

intercept \(\left( {0,\frac{1}{5}} \right)\) or maximum \(\left( {\frac{1}{2},\frac{1}{4}} \right)\) shown     A1

[2 marks]

c.

\(0 < f(x) \leqslant \frac{1}{4}\)     A1A1

Note: A1 for \( \leqslant \frac{1}{4}\), A1 for \(0 < \).

 

[2 marks]

d.

let \(u = x – \frac{1}{2}\)     A1

\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1\,\,\,\,\,{\text{(or d}}u = {\text{d}}x)\)     A1

\(\int {\frac{1}{{4{x^2} – 4x + 5}}{\text{d}}x = \int {\frac{1}{{4{{\left( {x – \frac{1}{2}} \right)}^2} + 4}}{\text{d}}x} } \)     A1

\(\int {\frac{1}{{4{u^2} + 4}}{\text{d}}u = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \)     AG

Note: If following through an incorrect answer to part (a), do not award final A1 mark.

[3 marks]

e.

\(\int_1^{3.5} {\frac{1}{{4{x^2} – 4x + 5}}{\text{d}}x = \frac{1}{4}\int_{0.5}^3 {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \)     A1

Note: A1 for correct change of limits. Award also if they do not change limits but go back to x values when substituting the limit (even if there is an error in the integral).

\(\frac{1}{4}\left[ {\arctan (u)} \right]_{0.5}^3\)     (M1)

\(\frac{1}{4}\left( {\arctan (3) – \arctan \left( {\frac{1}{2}} \right)} \right)\)     A1

let the integral = I

\(\tan 4I = \tan \left( {\arctan (3) – \arctan \left( {\frac{1}{2}} \right)} \right)\)     M1

\(\frac{{3 – 0.5}}{{1 + 3 \times 0.5}} = \frac{{2.5}}{{2.5}} = 1\)     (M1)A1

\(4I = \frac{\pi }{4} \Rightarrow I = \frac{\pi }{{16}}\)     A1AG

[7 marks]

f.

Question

Consider the polynomial \(q(x) = 3{x^3} – 11{x^2} + kx + 8\).

Given that \(q(x)\) has a factor \((x – 4)\), find the value of \(k\).[3]

a.

Hence or otherwise, factorize \(q(x)\) as a product of linear factors.[3]

b.
▶️Answer/Explanation

Markscheme

\(q(4) = 0\)     (M1)

\(192 – 176 + 4k + 8 = 0{\text{ }}(24 + 4k = 0)\)     A1

\(k =  – 6\)     A1

[3 marks]

a.

\(3{x^3} – 11{x^2} – 6x + 8 = (x – 4)(3{x^2} + px – 2)\)

equate coefficients of \({x^2}\):     (M1)

\( – 12 + p =  – 11\)

\(p = 1\)

\((x – 4)(3{x^2} + x – 2)\)     (A1)

\((x – 4)(3x – 2)(x + 1)\)     A1

Note:     Allow part (b) marks if any of this work is seen in part (a).

Note:     Allow equivalent methods (eg, synthetic division) for the M marks in each part.

[3 marks]

b.
Scroll to Top