IB DP Maths Topic 2.7 Solving exponential equations. SL Paper 1

Question

Given that \({2^m} = 8\) and \({2^n} = 16\), write down the value of \(m\) and of \(n\).

[2]
a.

Hence or otherwise solve \({8^{2x + 1}} = {16^{2x – 3}}\).

[4]
b.
Answer/Explanation

Markscheme

\(m = 3,{\text{ }}n = 4\)     A1A1     N2

[2 marks]

a.

attempt to apply \({({2^a})^b} = {2^{ab}}\)     (M1)

eg\(\;\;\;6x + 3,{\text{ }}4(2x – 3)\)

equating their powers of \(2\) (seen anywhere)     M1

eg\(\;\;\;3(2x + 1) = 8x – 12\)

correct working     A1

eg\(\;\;\;8x – 12 = 6x + 3,{\text{ }}2x = 15\)

\(x = \frac{{15}}{2}\;\;\;(7.5)\)     A1     N2

[4 marks]

Total [6 marks]

b.

Question

Let \(f(x) = 3{\tan ^4}x + 2k\) and \(g(x) =  – {\tan ^4}x + 8k{\tan ^2}x + k\), for \(0 \leqslant x \leqslant 1\), where \(0 < k < 1\). The graphs of \(f\) and \(g\) intersect at exactly one point. Find the value of \(k\).

Answer/Explanation

Markscheme

discriminant \( = 0\) (seen anywhere)     M1

valid approach     (M1)

eg\(\,\,\,\,\,\)\(f = g,{\text{ }}3{\tan ^4}x + 2k =  – {\tan ^4}x + 8k{\tan ^2}x + k\)

rearranging their equation (to equal zero)     (M1)

eg\(\,\,\,\,\,\)\(4{\tan ^4}x – 8k{\tan ^2}x + k = 0,{\text{ }}4{\tan ^4}x – 8k{\tan ^2}x + k\)

recognizing LHS is quadratic     (M1)

eg\(\,\,\,\,\,\)\(4{({\tan ^2}x)^2} – 8k{\tan ^2}x + k = 0,{\text{ }}4{m^2} – 8km + k\)

correct substitution into discriminant     A1

eg\(\,\,\,\,\,\)\({( – 8k)^2} – 4(4)(k)\)

correct working to find discriminant or solve discriminant \( = 0\)     (A1)

eg\(\,\,\,\,\,\)\(64{k^2} – 16k,{\text{ }}\frac{{ – ( – 16) \pm \sqrt {{{16}^2}} }}{{2 \times 64}}\)

correct simplification     (A1)

egx\(\,\,\,\,\,\)\(16k(4k – 1),{\text{ }}\frac{{32}}{{2 \times 64}}\)

\(k = \frac{1}{4}\)     A1     N2

[8 marks]

Scroll to Top