IB DP Maths Topic 3.4 Composite functions of the form f(x)=asin(b(x+c))+d SL Paper 1

Question

Let \(f(t) = a\cos b(t – c) + d\) , \(t \ge 0\) . Part of the graph of \(y = f(t)\) is given below.


When \(t = 3\) , there is a maximum value of 29, at M.

When \(t = 9\) , there is a minimum value of 15.

 

(i)     Find the value of a.

(ii)    Show that \(b = \frac{\pi }{6}\) .

(iii)   Find the value of d.

(iv)   Write down a value for c.

[7]
a(i), (ii), (iii) and (iv).

The transformation P is given by a horizontal stretch of a scale factor of \(\frac{1}{2}\) , followed by a translation of \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 10}
\end{array}} \right)\) .

Let \({M’}\) be the image of M under P. Find the coordinates of \({M’}\) .

[2]
b.

The graph of g is the image of the graph of f under P.

Find \(g(t)\) in the form \(g(t) = 7\cos B(t – c) + D\) .

[4]
c.

The graph of g is the image of the graph of f under P.

Give a full geometric description of the transformation that maps the graph of g to the graph of f .

[3]
d.
Answer/Explanation

Markscheme

(i) attempt to substitute     (M1)

e.g. \(a = \frac{{29 – 15}}{2}\)

\(a = 7\) (accept \(a = – 7\) )     A1     N2

(ii) \({\text{period}} = 12\)     (A1)

\(b = \frac{{2\pi }}{{12}}\)    A1

\(b = \frac{\pi }{6}\)    AG     N0

(iii) attempt to substitute     (M1)

e.g. \(d = \frac{{29 + 15}}{2}\)

\(d = 22\)     A1     N2

(iv) \(c = 3\) (accept \(c = 9\) from \(a = – 7\) )     A1     N1

Note: Other correct values for c can be found, \(c = 3 \pm 12k\) , \(k \in \mathbb{Z}\) .

[7 marks]

a(i), (ii), (iii) and (iv).

stretch takes 3 to 1.5     (A1)

translation maps \((1.5{\text{, }}29)\) to \((4.5{\text{, }}19)\) (so \({M’}\) is \((4.5{\text{, }}19)\))     A1     N2

[2 marks]

b.

\(g(t) = 7\cos \frac{\pi }{3}\left( {t – 4.5} \right) + 12\)    A1A2A1    N4

Note: Award A1 for \(\frac{\pi }{3}\) , A2 for 4.5, A1 for 12.

Other correct values for c can be found, \(c = 4.5 \pm 6k\) , \(k \in \mathbb{Z}\) .

[4 marks]

c.

translation \(\left( {\begin{array}{*{20}{c}}
{ – 3}\\
{10}
\end{array}} \right)\)     (A1)

horizontal stretch of a scale factor of 2     (A1)

completely correct description, in correct order     A1     N3

e.g. translation \(\left( {\begin{array}{*{20}{c}}
{ – 3}\\
{10}
\end{array}} \right)\) then horizontal stretch of a scale factor of 2

[3 marks]

d.

Question

Let \(f(x) = 6 + 6\sin x\) . Part of the graph of f is shown below.


The shaded region is enclosed by the curve of f , the x-axis, and the y-axis.

Solve for \(0 \le x < 2\pi \)

(i)     \(6 + 6\sin x = 6\) ;

(ii)    \(6 + 6\sin x = 0\) .

[5]
a(i) and (ii).

Write down the exact value of the x-intercept of f , for \(0 \le x < 2\pi \) .

[1]
b.

The area of the shaded region is k . Find the value of k , giving your answer in terms of \(\pi \) .

[6]
c.

Let \(g(x) = 6 + 6\sin \left( {x – \frac{\pi }{2}} \right)\) . The graph of f is transformed to the graph of g.

Give a full geometric description of this transformation.

[2]
d.

Let \(g(x) = 6 + 6\sin \left( {x – \frac{\pi }{2}} \right)\) . The graph of f is transformed to the graph of g.

Given that \(\int_p^{p + \frac{{3\pi }}{2}} {g(x){\rm{d}}x}  = k\) and \(0 \le p < 2\pi \) , write down the two values of p.

[3]
e.
Answer/Explanation

Markscheme

(i) \(\sin x = 0\)     A1

\(x = 0\) , \(x = \pi \)     A1A1     N2

(ii) \(\sin x = – 1\)     A1

\(x = \frac{{3\pi }}{2}\)    A1     N1

[5 marks]

a(i) and (ii).

\(\frac{{3\pi }}{2}\)     A1     N1

[1 mark]

b.

evidence of using anti-differentiation     (M1)

e.g. \(\int_0^{\frac{{3\pi }}{2}} {(6 + 6\sin x){\rm{d}}x} \)

correct integral \(6x – 6\cos x\) (seen anywhere)     A1A1

correct substitution     (A1)

e.g. \(6\left( {\frac{{3\pi }}{2}} \right) – 6\cos \left( {\frac{{3\pi }}{2}} \right) – ( – 6\cos 0)\) , \(9\pi  – 0 + 6\)

\(k = 9\pi + 6\)     A1A1     N3

[6 marks]

c.

translation of \(\left( {\begin{array}{*{20}{c}}
{\frac{\pi }{2}}\\
0
\end{array}} \right)\)     A1A1     N2

[2 marks]

d.

recognizing that the area under g is the same as the shaded region in f     (M1)

\(p = \frac{\pi }{2}\) , \(p = 0\)     A1A1     N3

[3 marks]

e.

Question

The following diagram represents a large Ferris wheel, with a diameter of 100 metres.


Let P be a point on the wheel. The wheel starts with P at the lowest point, at ground level. The wheel rotates at a constant rate, in an anticlockwise (counter-clockwise) direction. One revolution takes 20 minutes.

Let \(h(t)\) metres be the height of P above ground level after t minutes. Some values of \(h(t)\) are given in the table below.


Write down the height of P above ground level after

(i)     10 minutes;

(ii)    15 minutes.

[2]
a(i) and (ii).

(i)     Show that \(h(8) = 90.5\).

(ii)    Find \(h(21)\) .

[4]
b(i) and (ii).

Sketch the graph of h , for \(0 \le t \le 40\) .

[3]
c.

Given that h can be expressed in the form \(h(t) = a\cos bt + c\) , find a , b and c .

[5]
d.
Answer/Explanation

Markscheme

(i) 100 (metres)     A1     N1

(ii) 50 (metres)     A1     N1

[2 marks]

a(i) and (ii).

(i) identifying symmetry with \(h(2) = 9.5\)     (M1)

subtraction     A1

e.g. \(100 – h(2)\) , \(100 – 9.5\)

\(h(8) = 90.5\)     AG     N0

(ii) recognizing period     (M1)

e.g. \(h(21) = h(1)\)

\(h(21) = 2.4\)     A1     N2

[4 marks]

b(i) and (ii).


     A1A1A1     N3

Note: Award A1 for end points (0, 0) and (40, 0) , A1 for range \(0 \le h \le 100\) , A1 for approximately correct sinusoidal shape, with two cycles.

[3 marks]

c.

evidence of a quotient involving 20, \(2\pi \) or \({360^ \circ }\) to find b     (M1)

e.g. \(\frac{{2\pi }}{b} = 20\) , \(b = \frac{{360}}{{20}}\)

\(b = \frac{{2\pi }}{{20}}\) \(\left( { = \frac{\pi }{{10}}} \right)\) (accept \(b = 18\) if working in degrees)     A1     N2

\(a = – 50\) , \(c = 50\)     A2A1     N3

[5 marks]

d.

Question

The following diagram shows the graph of \(f(x) = a\sin (b(x – c)) + d\) , for \(2 \le x \le 10\) .


There is a maximum point at P(4, 12) and a minimum point at Q(8, −4) .

Use the graph to write down the value of

(i)     a ;

(ii)    c ;

(iii)   d .

[3]
a(i), (ii) and (iii).

Show that \(b = \frac{\pi }{4}\) .

[2]
b.

Find \(f'(x)\) .

[3]
c.

At a point R, the gradient is \( – 2\pi \) . Find the x-coordinate of R.

[6]
d.
Answer/Explanation

Markscheme

(i) \(a = 8\)     A1     N1

(ii) \(c = 2\)     A1     N1

(iii) \(d = 4\)     A1     N1

[3 marks]

a(i), (ii) and (iii).

METHOD 1

recognizing that period \( = 8\)     (A1)

correct working     A1

e.g. \(8 = \frac{{2\pi }}{b}\) , \(b = \frac{{2\pi }}{8}\)

\(b = \frac{\pi }{4}\)     AG     N0

METHOD 2

attempt to substitute     M1

e.g. \(12 = 8\sin (b(4 – 2)) + 4\)

correct working     A1

e.g. \(\sin 2b = 1\)

\(b = \frac{\pi }{4}\)     AG     N0

[2 marks]

b.

evidence of attempt to differentiate or choosing chain rule     (M1)

e.g. \(\cos \frac{\pi }{4}(x – 2)\) , \(\frac{\pi }{4} \times 8\)

\(f'(x) = 2\pi \cos \left( {\frac{\pi }{4}(x – 2)} \right)\) (accept \(2\pi \cos \frac{\pi }{4}(x – 2)\) )     A2     N3

[3 marks]

c.

recognizing that gradient is \(f'(x)\)     (M1)

e.g. \(f'(x) = m\)

correct equation     A1

e.g. \( – 2\pi  = 2\pi \cos \left( {\frac{\pi }{4}(x – 2)} \right)\) , \( – 1 = \cos \left( {\frac{\pi }{4}(x – 2)} \right)\)

correct working     (A1)

e.g. \({\cos ^{ – 1}}( – 1) = \frac{\pi }{4}(x – 2)\)

using \({\cos ^{ – 1}}( – 1) = \pi \) (seen anywhere)     (A1)

e.g. \(\pi  = \frac{\pi }{4}(x – 2)\)

simplifying     (A1)

e.g. \(4 = (x – 2)\)

\(x = 6\)     A1     N4

[6 marks]

d.

Question

Let \(f(x) = \sin \left( {x + \frac{\pi }{4}} \right) + k\). The graph of f passes through the point \(\left( {\frac{\pi }{4},{\text{ }}6} \right)\).

Find the value of \(k\).

[3]
a.

Find the minimum value of \(f(x)\).

[2]
b.

Let \(g(x) = \sin x\). The graph of g is translated to the graph of \(f\) by the vector \(\left( {\begin{array}{*{20}{c}} p \\ q \end{array}} \right)\).

Write down the value of \(p\) and of \(q\).

[2]
c.
Answer/Explanation

Markscheme

METHOD 1

attempt to substitute both coordinates (in any order) into \(f\)     (M1)

eg     \(f\left( {\frac{\pi }{4}} \right) = 6,{\text{ }}\frac{\pi }{4} = \sin \left( {6 + \frac{\pi }{4}} \right) + k\)

correct working     (A1)

eg     \(\sin \frac{\pi }{2} = 1,{\text{ }}1 + k = 6\)

\(k = 5\)     A1     N2

[3 marks]

METHOD 2

recognizing shift of \(\frac{\pi }{4}\) left means maximum at \(6\)     R1)

recognizing \(k\) is difference of maximum and amplitude     (A1)

eg     \(6 – 1\)

\(k = 5\)     A1     N2

[3 marks] 

a.

evidence of appropriate approach     (M1)

eg     minimum value of \(\sin x\) is \( – 1,{\text{ }} – 1 + k,{\text{ }}f'(x) = 0,{\text{ }}\left( {\frac{{5\pi }}{4},{\text{ }}4} \right)\)

minimum value is \(4\)     A1     N2

[2 marks]

b.

\(p =  – \frac{\pi }{4},{\text{ }}q = 5{\text{     }}\left( {{\text{accept \(\left( \begin{array}{c} – {\textstyle{\pi  \over 4}}\\5\end{array} \right)\)}}} \right)\)     A1A1     N2

[2 marks]

c.

Question

Let \(f(x) = 3\sin (\pi x)\).

Write down the amplitude of \(f\).

[1]
a.

Find the period of \(f\).

[2]
b.

On the following grid, sketch the graph of \(y = f(x)\), for \(0 \le x \le 3\).

[4]
c.
Answer/Explanation

Markscheme

amplitude is 3     A1     N1

a.

valid approach     (M1)

eg\(\;\;\;{\text{period}} = \frac{{2\pi }}{\pi },{\text{ }}\frac{{360}}{\pi }\)

period is 2     A1     N2

b.

      A1

A1A1A1     N4

Note:     Award A1 for sine curve starting at (0, 0) and correct period.

Only if this A1 is awarded, award the following for points in circles:

A1 for correct x-intercepts;

A1 for correct max and min points;

A1 for correct domain.

c.

Question

Let \(f(x) = 3\sin \left( {\frac{\pi }{2}x} \right)\), for \(0 \leqslant x \leqslant 4\).

(i)     Write down the amplitude of \(f\).

(ii)     Find the period of \(f\).

[3]
a.

On the following grid sketch the graph of \(f\).

M16/5/MATME/SP1/ENG/TZ1/03.b

[4]
b.
Answer/Explanation

Markscheme

(i)     3     A1     N1

(ii)     valid attempt to find the period     (M1)

eg\(\,\,\,\,\,\)\(\frac{{2\pi }}{b},{\text{ }}\frac{{2\pi }}{{\frac{\pi }{2}}}\)

period \( = 4\)     A1     N2

[3 marks]

a.

M16/5/MATME/SP1/ENG/TZ1/03.b/M     A1A1A1A1     N4

[4 marks]

b.

Question

Let \(f(x) = \cos x + \sqrt 3 \sin x\) , \(0 \le x \le 2\pi \) . The following diagram shows the graph of \(f\) .


The \(y\)-intercept is at (\(0\), \(1\)) , there is a minimum point at A (\(p\), \(q\)) and a maximum point at B.

Find \(f'(x)\) .

[2]
a.

Hence

(i)     show that \(q = – 2\) ;

(ii)    verify that A is a minimum point.

[10]
b(i) and (ii).

Find the maximum value of \(f(x)\) .

[3]
c.

The function \(f(x)\) can be written in the form \(r\cos (x – a)\) .

Write down the value of r and of a .

[2]
d.
Answer/Explanation

Markscheme

\(f'(x) = – \sin x + \sqrt 3 \cos x\)     A1A1     N2

[2 marks]

a.

(i) at A, \(f'(x) = 0\)     R1

correct working     A1

e.g. \(\sin x = \sqrt 3 \cos x\)

\(\tan x = \sqrt 3 \)     A1

\(x = \frac{\pi }{3}\) , \(\frac{{4\pi }}{3}\)     A1

attempt to substitute their x into \(f(x)\)     M1

e.g. \(\cos \left( {\frac{{4\pi }}{3}} \right) + \sqrt 3 \sin \left( {\frac{{4\pi }}{3}} \right)\)

correct substitution     A1

e.g. \( – \frac{1}{2} + \sqrt 3 \left( { – \frac{{\sqrt 3 }}{2}} \right)\)

correct working that clearly leads to \( – 2\)     A1

e.g. \( – \frac{1}{2} – \frac{3}{2}\)

 \(q = – 2\)     AG     N0

(ii) correct calculations to find \(f'(x)\) either side of \(x = \frac{{4\pi }}{3}\)     A1A1

e.g. \(f'(\pi ) = 0 – \sqrt 3 \) ,  \(f'(2\pi ) = 0 + \sqrt 3 \)   

\(f'(x)\) changes sign from negative to positive     R1

so A is a minimum     AG     N0

[10 marks]

b(i) and (ii).

max when \(x = \frac{\pi }{3}\)     R1

correctly substituting \(x = \frac{\pi }{3}\) into \(f(x)\)     A1

e.g. \(\frac{1}{2} + \sqrt 3 \left( {\frac{{\sqrt 3 }}{2}} \right)\)

max value is 2     A1     N1

[3 marks]

c.

\(r = 2\) , \(a = \frac{\pi }{3}\)     A1A1     N2

[2 marks]

d.
Scroll to Top