IB DP Maths Topic 3.6 Solution of triangles SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The diagram below shows triangle PQR. The length of [PQ] is 7 cm , the length of [PR] is 10 cm , and \({\rm{P}}\widehat {\rm{Q}}{\rm{R}}\) is \(75^\circ \) .


Find \({\rm{P}}\widehat {\rm{R}}{\rm{Q}}\) .

[3]
a.

Find the area of triangle PQR.

[3]
b.
Answer/Explanation

Markscheme

choosing sine rule     (M1)

correct substitution \(\frac{{\sin R}}{7} = \frac{{\sin 75^\circ }}{{10}}\)     A1

\(\sin R = 0.676148 \ldots \)

\({\rm{P}}\widehat {\rm{R}}{\rm{Q = 42}}{\rm{.5}}^\circ \)     A1     N2

[3 marks]

a.

\(P = 180 – 75 – R\)

\(P = 62.5\)     (A1)

substitution into any correct formula     A1

e.g. \({\text{area }}\Delta {\text{PQR}} = \frac{1}{2} \times 7 \times 10 \times \sin ({\text{their }}P)\)

\(= 31.0\) (cm2)     A1     N2

[3 marks]

b.

Question

A ship leaves port A on a bearing of \(030^\circ \) . It sails a distance of \(25{\text{ km}}\) to point B. At B, the ship changes direction to a bearing of \(100^\circ \) . It sails a distance of \(40{\text{ km}}\) to reach point C. This information is shown in the diagram below.


A second ship leaves port A and sails directly to C.

Find the distance the second ship will travel.

[4]
a.

Find the bearing of the course taken by the second ship.

[3]
b.
Answer/Explanation

Markscheme

finding \({\text{A}}\widehat {\rm{B}}{\rm{C}} = 110^\circ \) (\( = 1.92\) radians)     (A1)

evidence of choosing cosine rule     (M1)

e.g. \({\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^2} – 2({\rm{AB}})({\rm{BC}})\cos {\rm{A}}\widehat {\rm{B}}{\rm{C}}\)

correct substitution     A1

e.g. \({\rm{A}}{{\rm{C}}^2} = {25^2} + {40^2} – 2(25)(40)\cos 110^\circ \)

\({\rm{A}}{{\rm{C}}^{}} = 53.9\) (km)     A1

a.

METHOD 1

correct substitution into the sine rule     A1

e.g.  \(\frac{{\sin {\rm{B}}\widehat {\rm{A}}{\rm{C}}}}{{40}} = \frac{{\sin 110^\circ }}{{53.9}}\)     A1

\({\rm{B}}\widehat {\rm{A}}{\rm{C}} = 44.2^\circ \)

bearing \( = 074^\circ \)     A1     N1

METHOD 2

correct substitution into the cosine rule     A1

e.g. \(\cos {\rm{B}}\widehat {\rm{A}}{\rm{C}} = \frac{{{{40}^2} – {{25}^2} – {{53.9}^2}}}{{ – 2(25)(53.9)}}\)     A1

\({\rm{B}}\widehat {\rm{A}}{\rm{C}} = 44.3^\circ \)

bearing \( = 074^\circ \)     A1     N1

[3 marks]

b.

Question

The circle shown has centre O and radius 3.9 cm.


Points A and B lie on the circle and angle AOB is 1.8 radians.

Find AB.

[3]
a.

Find the area of the shaded region.

[4]
b.
Answer/Explanation

Markscheme

METHOD 1

choosing cosine rule     (M1)

substituting correctly     A1

e.g. \({\rm{AB}} = \sqrt {{{3.9}^2} + {{3.9}^2} – 2(3.9)(3.9)\cos 1.8} \)

\({\rm{AB}} = 6.11\) (cm)     A1     N2

METHOD 2

evidence of approach involving right-angled triangles     (M1)

substituting correctly     A1

e.g. \(\sin 0.9 = \frac{x}{{3.9}}\) , \(\frac{1}{2}{\rm{AB}} = 3.9\sin 0.9\)

\({\rm{AB}} = 6.11\) (cm)     A1     N2

METHOD 3

choosing the sine rule     (M1)

substituting correctly     A1

e.g. \(\frac{{\sin 0.670 \ldots }}{{3.9}} = \frac{{\sin 1.8}}{{{\rm{AB}}}}\)

\({\rm{AB}} = 6.11\) (cm)     A1     N2

[3 marks]

a.

METHOD 1

reflex \({\rm{A}}\widehat {\rm{O}}{\rm{B}} = 2\pi  – 1.8\) \(( = 4.4832)\)     (A2)

correct substitution \(A = \frac{1}{2}{(3.9)^2}(4.4832 \ldots )\)     A1

area =34.1 (cm2)     A1     N2

METHOD 2

finding area of circle \(A = \pi {(3.9)^2}\) \(( = 47.78 \ldots )\)     (A1)

finding area of (minor) sector \(A = \frac{1}{2}{(3.9)^2}(1.8)\) \(( = 13.68 \ldots )\)    (A1)

subtracting     M1

e.g. \(\pi {(3.9)^2} – 0.5{(3.9)^2}(1.8)\) , \(47.8 – 13.7\)

area = 34.1 (cm2)    A1     N2

METHOD 3

finding reflex \({\rm{A}}\widehat {\rm{O}}{\rm{B}} = 2\pi  – 1.8\) \(( = 4.4832)\)     (A2)

finding proportion of total area of circle     A1

e.g. \(\frac{{2\pi  – 1.8}}{{2\pi }} \times \pi {(3.9)^2}\) , \(\frac{\theta }{{2\pi }} \times \pi {r^2}\)

area = 34.1 (cm2)     A1     N2

[4 marks]

b.

Question

The diagram below shows a triangle ABD with AB =13 cm and AD = 6.5 cm.

Let C be a point on the line BD such that BC = AC = 7 cm.


Find the size of angle ACB.

[3]
a.

Find the size of angle CAD.

[5]
b.
Answer/Explanation

 

Answer/Explanation

Markscheme

METHOD 1

evidence of choosing the cosine formula     (M1)

correct substitution     A1

e.g. \(\cos {\rm{A}}\widehat {\rm{C}}{\rm{B}} = \frac{{{7^2} + {7^2} – {{13}^2}}}{{2 \times 7 \times 7}}\)

\({\rm{A}}\widehat {\rm{C}}{\rm{B}} = 2.38\) radians \(( = 136^\circ )\)    A1     N2

METHOD 2

evidence of appropriate approach involving right-angled triangles     (M1)

correct substitution     A1

e.g. \(\sin \left( {\frac{1}{2}{\rm{A}}\widehat {\rm{C}}{\rm{B}}} \right) = \frac{{6.5}}{7}\)

\({\rm{A}}\widehat {\rm{C}}{\rm{B}} = 2.38\) radians \(( = 136^\circ )\)    A1     N2

[3 marks]

a.

METHOD 1

\({\rm{A}}\widehat {\rm{C}} {\rm{D}} = \pi  – 2.381\) \((180 – 136.4)\)      (A1)

evidence of choosing the sine rule in triangle ACD    (M1)

correct substitution     A1

e.g. \(\frac{{6.5}}{{\sin 0.760 \ldots }} = \frac{7}{{\sin {\rm{A}}\widehat {\rm{D}} {\rm{C}}}}\)

\({\rm{A}}\widehat {\rm{D}}{\rm{C}} = 0.836 \ldots \) \(( = 47.9 \ldots ^\circ )\)     A1

\({\rm{C}}\widehat {\rm{A}}{\rm{D}} = \pi  – (0.760 \ldots  + 0.836 \ldots )\) \((180 – (43.5 \ldots  + 47.9 \ldots ))\) 

\( = 1.54\) \(( = 88.5^\circ )\)     A1     N3

METHOD 2

\({\rm{A}}\widehat {\rm{B}}{\rm{C}} = \frac{1}{2}(\pi  – 2.381)\) \(\left( {\frac{1}{2}(180 – 136.4)} \right)\)      (A1)

evidence of choosing the sine rule in triangle ABD     (M1)

correct substitution     A1

e.g. \(\frac{{6.5}}{{\sin 0.380 \ldots }} = \frac{{13}}{{\sin {\rm{A}}\widehat {\rm{D}}{\rm{C}}}}\)

\({\rm{A}}\widehat {\rm{D}}{\rm{C}} = 0.836 \ldots \) \(( = 47.9 \ldots ^\circ )\)     A1

\({\rm{C}}\widehat {\rm{A}}{\rm{D}} = \pi  – 0.836 \ldots – (\pi  – 2.381 \ldots )\) \(( = 180 – 47.9 \ldots – (180 – 136.4))\)

\( = 1.54\) \(( = 88.5^\circ )\)     A1     N3

Note: Two triangles are possible with the given information. If candidate finds \({\rm{A}}\widehat {\rm{D}}{\rm{C}} = 2.31\) \((132^\circ )\) leading to \({\rm{C}}\widehat {\rm{A}}{\rm{D}} = 0.076\) \((4.35^\circ )\) , award marks as per markscheme.

[5 marks]

b.

Question

The following diagram shows a circle with centre O and radius 4 cm.


The points A, B and C lie on the circle. The point D is outside the circle, on (OC).

Angle ADC = 0.3 radians and angle AOC = 0.8 radians.

 

Find AD.

[3]
a.

Find OD.

[4]
b.

Find the area of sector OABC.

[2]
c.

Find the area of region ABCD.

[4]
d.
Answer/Explanation

Markscheme

choosing sine rule     (M1)

correct substitution     A1

e.g. \(\frac{{{\rm{AD}}}}{{\sin 0.8}} = \frac{4}{{\sin 0.3}}\)

\({\text{AD}} = 9.71{\text{ (cm)}}\)     A1     N2

[3 marks]

a.

METHOD 1

finding angle \({\rm{OAD}} = \pi  – 1.1 = (2.04)\) (seen anywhere)     (A1)

choosing cosine rule     (M1)

correct substitution     A1

e.g. \({\rm{O}}{{\rm{D}}^2} = {9.71^2} + {4^2} – 2 \times 9.71 \times 4 \times \cos (\pi  – 1.1)\)

\({\text{OD}} = 12.1{\text{ (cm)}}\)     A1     N3

METHOD 2

finding angle \({\rm{OAD}} = \pi  – 1.1 = (2.04)\) (seen anywhere)     (A1)

choosing sine rule     (M1)

correct substitution     A1

e.g. \(\frac{{{\rm{OD}}}}{{\sin (\pi  – 1.1)}} = \frac{{9.71}}{{\sin 0.8}} = \frac{4}{{\sin 0.3}}\)

\({\text{OD}} = 12.1{\text{ (cm)}}\)     A1     N3

[4 marks]

b.

correct substitution into area of a sector formula     (A1)

e.g. \({\rm{area}} = 0.5 \times {4^2} \times 0.8\)

\({\text{area}} = 6.4{\text{ (c}}{{\text{m}}^2}{\text{)}}\)     A1     N2

[2 marks]

c.

substitution into area of triangle formula OAD     (M1)

correct substitution     A1

e.g. \(A{\rm{ = }}\frac{1}{2} \times 4 \times 12.1 \times \sin 0.8\) , \(A{\rm{ = }}\frac{1}{2} \times 4 \times 9.71 \times \sin 2.04\) , \(A{\rm{ = }}\frac{1}{2} \times 12.1 \times 9.71 \times \sin 0.3\)

subtracting area of sector OABC from area of triangle OAD     (M1)

e.g. \({\text{area ABCD}} = 17.3067 – 6.4\)

\({\text{area ABCD}} = 10.9{\text{ (c}}{{\text{m}}^2}{\text{)}}\)     A1     N2

[4 marks]

d.

Question

The following diagram shows \(\Delta {\rm{PQR}}\) , where RQ = 9 cm, \({\rm{P\hat RQ}} = {70^ \circ }\) and \({\rm{P\hat QR}} = {45^ \circ }\) .

Find \({\rm{R\hat PQ}}\) .

[1]
a.

Find PR .

[3]
b.

Find the area of \(\Delta {\rm{PQR}}\) .

[2]
c.
Answer/Explanation

Markscheme

\({\rm{R\hat PQ = }}{65^ \circ }\)     A1     N1 

[1 mark]

a.

evidence of choosing sine rule     (M1)

correct substitution     A1

e.g. \(\frac{{{\rm{PR}}}}{{\sin {{45}^ \circ }}} = \frac{9}{{\sin {{65}^ \circ }}}\)

7.021854078

\({\rm{PR}} = 7.02\)     A1     N2

[3 marks]

b.

correct substitution     (A1)

e.g. \({\rm{area}} = \frac{1}{2} \times 9 \times 7.02 \ldots \times \sin {70^ \circ }\)

\(29.69273008\)

\({\rm{area}} = 29.7\)     A1     N2

[2 marks]

c.

Question

The diagram shows a circle of radius \(8\) metres. The points ABCD lie on the circumference of the circle.

BC = \(14\) m, CD = \(11.5\) m, AD = \(8\) m, \(A\hat DC = {104^ \circ }\) , and \(B\hat CD = {73^ \circ }\) .

Find AC.

[3]
a.

(i)     Find \(A\hat CD\) .

(ii)     Hence, find \(A\hat CB\) .

[5]
b.

Find the area of triangle ADC.

[2]
c.

(c)     Find the area of triangle ADC.

(d)     Hence or otherwise, find the total area of the shaded regions.

[6]
cd.

Hence or otherwise, find the total area of the shaded regions.

[4]
d.
Answer/Explanation

Markscheme

evidence of choosing cosine rule     (M1)

eg   \({c^2} = {a^2} + {b^2} – 2ab\cos C\) , \({\rm{C}}{{\rm{D}}^2} + {\rm{A}}{{\rm{D}}^2} – 2 \times {\rm{CD}} \times {\rm{AD}}\cos D\)

correct substitution     A1

eg   \({11.5^2} + {8^2} – 2 \times 11.5 \times 8\cos 104\) , \(196.25 – 184\cos 104\)

AC \( = 15.5\) (m)     A1     N2

[3 marks]

a.

(i)     METHOD 1

evidence of choosing sine rule     (M1)

eg   \(\frac{{\sin A}}{a} = \frac{{\sin B}}{b}\) , \(\frac{{\sin {\rm{A}}\widehat {\rm{C}}{\rm{D}}}}{{{\rm{AD}}}} = \frac{{\sin D}}{{{\rm{AC}}}}\)

correct substitution     A1

eg   \(\frac{{\sin {\rm{A}}\hat {\rm{C}}{\rm{D}}}}{8} = \frac{{\sin 104}}{{15.516 \ldots }}\)

\({\rm{A}}\hat {\rm{C}}{\rm{D}} = {30.0^ \circ }\)     A1     N2

METHOD 2

evidence of choosing cosine rule     (M1)

eg   \({c^2} = {a^2} + {b^2} – 2ab\cos C\)

correct substitution     A1

e.g. \({8^2} = {11.5^2} + 15.516{ \ldots ^2} – 2(11.5)(15.516 \ldots )\cos C\)

\({\rm{A}}\hat {\rm{C}}{\rm{D}} = {30.0^ \circ }\)     A1     N2

(ii)     subtracting their \({\rm{A}}\hat {\rm{C}}{\rm{D}}\) from \(73\)     (M1)

eg   \({\rm{7}}3 – {\rm{A}}\hat {\rm{C}}{\rm{D}}\) , \(70 – 30.017 \ldots \)

\({\rm{A}}\hat {\rm{C}}{\rm{B}} = {43.0^ \circ }\)     A1     N2

[5 marks]

b.

correct substitution     (A1)

eg area \(\Delta {\rm{ADC}} = \frac{1}{2}(8)(11.5)\sin 104\)

area \( = 44.6\) (m2)     A1     N2

[2 marks]

c.

(c)     correct substitution     (A1)

eg area \(\Delta {\rm{ADC}} = \frac{1}{2}(8)(11.5)\sin 104\)

area \( = 44.6\) (m2)     A1     N2

[2 marks]


(d)     attempt to subtract     (M1)

eg   \({\rm{circle}} – {\rm{ABCD}}\) , \(\pi {r^2} – \Delta {\rm{ADC}} – \Delta {\rm{ACB}}\)

area \(\Delta {\rm{ACB = }}\frac{1}{2}(15.516 \ldots )(14)\sin 42.98\)     (A1)

correct working     A1

eg   \(\pi {(8)^2} – 44.6336 \ldots  – \frac{1}{2}(15.516 \ldots )(14)\sin 42.98\) , \(64\pi  – 44.6 – 74.1\)

shaded area is \(82.4\) (m2)     A1     N3

[4 marks]

Total [6 marks]

cd.

attempt to subtract     (M1)

eg   \({\rm{circle}} – {\rm{ABCD}}\) , \(\pi {r^2} – \Delta {\rm{ADC}} – \Delta {\rm{ACB}}\)

area \(\Delta {\rm{ACB = }}\frac{1}{2}(15.516 \ldots )(14)\sin 42.98\)     (A1)

correct working     A1

eg   \(\pi {(8)^2} – 44.6336 \ldots  – \frac{1}{2}(15.516 \ldots )(14)\sin 42.98\) , \(64\pi  – 44.6 – 74.1\)

shaded area is \(82.4\) (m2)     A1     N3

[4 marks]

Total [6 marks]

d.

Question

The following diagram shows a triangle ABC.


The area of triangle ABC is \(80\) cm2 , AB \( = 18\) cm , AC \( = x\) cm and \({\rm{B}}\hat {\rm{A}}{\rm{C}} = {50^ \circ }\) .

Find \(x\) .

[3]
a.

Find BC.

[3]
b.
Answer/Explanation

Markscheme

correct substitution into area formula     (A1)

eg   \(\frac{1}{2}(18x)\sin 50\)

setting their area expression equal to \(80\)     (M1)

eg   \(9x\sin 50 = 80\)

\(x = 11.6\)     A1     N2

[3 marks]

a.

evidence of choosing cosine rule     (M1)

eg   \({c^2} = {a^2} + {b^2} + 2ab\sin C\)

correct substitution into right hand side (may be in terms of \(x\))     (A1)

eg   \({11.6^2} + {18^2} – 2(11.6)(18)\cos 50\)

BC \( = 13.8\)     A1     N2

[3 marks]

b.

Question

Consider a circle with centre \(\rm{O}\) and radius \(7\) cm. Triangle \(\rm{ABC}\) is drawn such that its vertices are on the circumference of the circle.

\(\rm{AB}=12.2\) cm, \(\rm{BC}=10.4\) cm and \(\rm{A}\hat{\rm{C}}\rm{B}=1.058\) radians.

Find \({\rm{B\hat AC}}\).

[3]
a.

Find \({\text{AC}}\).

[5]
b.

Hence or otherwise, find the length of arc \({\text{ABC}}\).

[6]
c.
Answer/Explanation

Markscheme

Notes: In this question, there may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.

Candidates may have their GDCs in degree mode, leading to incorrect answers. If working shown, award marks in line with the markscheme, with FT as appropriate.

Ignore missing or incorrect units.

evidence of choosing sine rule     (M1)

eg     \(\frac{{\sin \hat A}}{a} = \frac{{\sin \hat B}}{b}\)

correct substitution     (A1)

eg     \(\frac{{\sin \hat A}}{{10.4}} = \frac{{\sin 1.058}}{{12.2}}\)

\({\rm{B\hat AC}} = 0.837\)     A1     N2

[3 marks]

a.

Notes: In this question, there may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.

Candidates may have their GDCs in degree mode, leading to incorrect answers. If working shown, award marks in line with the markscheme, with FT as appropriate.

Ignore missing or incorrect units.

METHOD 1

evidence of subtracting angles from \(\pi \)     (M1)

eg     \({\rm{A\hat BC}} = \pi  – A – C\)

correct angle (seen anywhere)     A1

\({\rm{A\hat BC}} = \pi  – 1.058 – 0.837,{\text{ }}1.246,{\text{ }}71.4^\circ \)

attempt to substitute into cosine or sine rule     (M1)

correct substitution     (A1)

eg     \({12.2^2} + {10.4^2} – 2 \times 12.2 \times 10.4\cos 71.4,{\text{ }}\frac{{{\text{AC}}}}{{\sin 1.246}} = \frac{{12.2}}{{\sin 1.058}}\)

\({\text{AC}} = 13.3{\text{ (cm)}}\)     A1     N3

METHOD 2

evidence of choosing cosine rule     M1

eg     \({a^2} = {b^2} + {c^2} – 2bc\cos A\)

correct substitution     (A2)

eg     \({12.2^2} = {10.4^2} + {b^2} – 2 \times 10.4b\cos 1.058\)

\({\text{AC}} = 13.3{\text{ (cm)}}\)     A2     N3

[5 marks] 

b.

Notes: In this question, there may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.

Candidates may have their GDCs in degree mode, leading to incorrect answers. If working shown, award marks in line with the markscheme, with FT as appropriate.

Ignore missing or incorrect units.

 

METHOD 1

valid approach     (M1)

eg     \(\cos {\rm{A\hat OC}} = \frac{{{\text{O}}{{\text{A}}^2} + {\text{O}}{{\text{C}}^2} – {\text{A}}{{\text{C}}^2}}}{{2 \times {\text{OA}} \times {\text{OC}}}}\), \({\rm{A\hat OC}} = 2 \times {\rm{A\hat BC}}\)

correct working     (A1)

eg     \({\text{13.}}{{\text{3}}^2} = {7^2} + {7^2} – 2 \times 7 \times 7\cos {\rm{A\hat OC}},{\text{ }}O = 2 \times 1.246\)

\({\rm{A\hat OC}} = 2.492{\text{   }}(142.8^\circ )\)     (A1)

EITHER

correct substitution for arc length (seen anywhere)     A1

eg     \(2.492 = \frac{l}{7},{\text{ }}l = 17.4,{\text{ }}14\pi  \times \frac{{142.8}}{{360}}\)

subtracting arc from circumference     (M1)

eg     \(2\pi r – l,{\text{ }}14\pi  = 17.4\)

OR

attempt to find \({\rm{A\hat OC}}\) reflex     (M1)

eg     \(2\pi  – 2.492,{\text{ }}3.79,{\text{ }}360 – 142.8\)

correct substitution for arc length (seen anywhere)     A1

eg     \(l = 7 \times 3.79,{\text{ }}14\pi  \times \frac{{217.2}}{{360}}\)

THEN

\({\text{arc ABC}} = 26.5\)     A1     N4

METHOD 2

valid approach to find \({\rm{A\hat OB}}\) or \({\rm{B\hat OC}}\)     (M1)

eg     choosing cos rule, twice angle at circumference

correct working for finding one value, \({\rm{A\hat OB}}\) or \({\rm{B\hat OC}}\)     (A1)

eg     \(\cos {\rm{A\hat OB}} = \frac{{{7^2} + {7^2} – {{12.2}^2}}}{{2 \times 7 \times 7}}\), \({\rm{A\hat OB}} = 2.116,{\rm{B\hat OC}} = 1.6745\)

two correct calculations for arc lengths 

eg     \({\text{AB}} = 7 \times 2 \times 1.058{\text{ }}( = 14.8135),{\text{   }}7 \times 1.6745{\text{ }}( = 11.7216)\)     (A1)(A1)

adding their arc lengths (seen anywhere)

eg     \(r{\rm{A\hat OB}} + r{\rm{B\hat OC}},{\text{ }}14.8135 + 11.7216,{\text{ }}7(2.116 + 1.6745)\)     M1

\({\text{arc ABC}} = 26.5{\text{ (cm)}}\)     A1     N4

 

Note: Candidates may work with other interior triangles using a similar method. Check calculations carefully and award marks in line with markscheme.

 

[6 marks]

c.

Question

The following diagram shows triangle ABC.

Find AC.

[3]
a.

Find \({\rm{B\hat CA}}\).

[3]
b.
Answer/Explanation

Markscheme

evidence of choosing cosine rule     (M1)

eg   \({\text{A}}{{\text{C}}^2} = {\text{A}}{{\text{B}}^2} + {\text{B}}{{\text{C}}^2} – 2({\text{AB}})({\text{BC}})\cos ({\rm{A\hat BC}})\)

correct substitution into the right-hand side     (A1)

eg   \({6^2} + {10^2} – 2(6)(10)\cos {100^ \circ }\)

\({\text{AC}} = 12.5234\)

\({\text{AC}} = 12.5{\text{ (cm)}}\)     A1     N2

[3 marks]

a.

evidence of choosing a valid approach     (M1)

eg   sine rule, cosine rule

correct substitution     (A1)

eg   \(\frac{{\sin ({\rm{B\hat CA)}}}}{6} = \frac{{\sin 100^\circ }}{{12.5}},{\text{ }}\cos ({\rm{B\hat CA)}} = \frac{{{{({\text{AC}})}^2} + {{10}^2} – {6^2}}}{{2({\text{AC}})(10)}}\)

\({\rm{B\hat CA}} = 28.1525\)

\({\rm{B\hat CA}} = 28.2^\circ\)     A1     N2

[3 marks]

b.

Question

In triangle \(\rm{ABC}\), \(\rm{AB} = 6\,\rm{cm}\) and \(\rm{AC} = 8\,\rm{cm}\). The area of the triangle is \(16\,\rm{cm}^2\).

Find the two possible values for \(\hat A\).

[4]
a.

Given that \(\hat A\) is obtuse, find \({\text{BC}}\).

[3]
b.
Answer/Explanation

Markscheme

correct substitution into area formula     (A1)

eg     \(\frac{1}{2}(6)(8)\sin A = 16,{\text{ }}\sin A = \frac{{16}}{{24}}\)

correct working     (A1)

eg     \(A = \arcsin \left( {\frac{2}{3}} \right)\)

\(A = 0.729727656…, 2.41186499…\); \((41.8103149^\circ, 138.1896851^\circ)\)

\(A = 0.730\); \(2.41\)     A1A1     N3

(accept degrees ie \(41.8^\circ\); \(138^\circ\))

[4 marks]

a.

evidence of choosing cosine rule     (M1)

eg     \({\text{B}}{{\text{C}}^2} = {\text{A}}{{\text{B}}^2} + {\text{A}}{{\text{C}}^2} – 2({\text{AB)(AC)}}\cos A,{\text{ }}{a^2} + {b^2} – 2ab\cos C\)

correct substitution into RHS (angle must be obtuse)     (A1)

eg     \({\text{B}}{{\text{C}}^2} = {6^2} + {8^2} – 2(6)(8)\cos 2.41,{\text{ }}{6^2} + {8^2} – 2(6)(8)\cos 138^\circ \),

     \({\text{BC}} = \sqrt {171.55} \)

\({\text{BC}} = 13.09786\)

\({\text{BC}} = 13.1{\text{ cm}}\)     A1     N2

[3 marks]

b.

Question

The following diagram shows a circle with centre \(O\) and radius \(8\) cm.

The points \(A\), \(B\) and \(C\) are on the circumference of the circle, and \({\rm{A\hat OB}}\) radians.

Find the length of arc \(ACB\).

[2]
a.

Find \(AB\).

[3]
b.

Hence, find the perimeter of the shaded segment \(ABC\).

[2]
c.
Answer/Explanation

Markscheme

correct substitution into formula     (A1)

eg\(\;\;\;\)\(l = 1.2 \times 8\)

\(9.6{\text{ (cm)}}\)     A1     N2

[2 marks]

a.

METHOD 1

evidence of choosing cosine rule     (M1)

eg\(\;\;\;\)\(2{r^2} – 2 \times {r^2} \times \cos ({\rm{A\hat OB)}}\)

correct substitution into right hand side     (A1)

eg\(\;\;\;\)\({8^2} + {8^2} – 2 \times 8 \times 8 \times \cos (1.2)\)

\(9.0342795\)

\({\text{AB}} = 9.03{\text{ }}[9.03,{\text{ }}9.04]{\text{ (cm)}}\)     A1     N2

METHOD 2

evidence of choosing sine rule     (M1)

eg\(\;\;\;\)\(\frac{{{\text{AB}}}}{{\sin ({\rm{A\hat OB)}}}} = \frac{{{\text{OB}}}}{{\sin ({\rm{O\hat AB)}}}}\)

finding angle \(OAB\) or \(OBA\) (may be seen in substitution)     (A1)

eg\(\;\;\;\)\(\frac{{\pi  – 1.2}}{2},{\text{ }}0.970796\)

\({\text{AB}} = 9.03{\text{ }}[9.03,{\text{ }}9.04]{\text{ (cm)}}\)     A1     N2

[3 marks]

b.

correct working     (A1)

eg\(\;\;\;\)\(P = 9.6 + 9.03\)

\(18.6342\)

\(18.6{\text{ }}[18.6,{\text{ }}18.7]{\text{ (cm)}}\)     A1     N2

[2 marks]

Total [7 marks]

c.

Question

The following diagram shows the quadrilateral \(ABCD\).

\[{\text{AD}} = 6{\text{ cm}},{\text{ AB}} = 15{\text{ cm}},{\rm{ A\hat BC}} = 44^\circ ,{\rm{ A\hat CB}} = 83^\circ {\rm{ and D\hat AC}} = \theta \]

Find \(AC\).

[3]
a.

Find the area of triangle \(ABC\).

[3]
b.

The area of triangle \(ACD\) is half the area of triangle \(ABC\).

Find the possible values of \(\theta \).

[5]
c.

Given that \(\theta \) is obtuse, find \(CD\).

[3]
d.
Answer/Explanation

Markscheme

evidence of choosing sine rule     (M1)

eg\(\;\;\;\frac{{{\text{AC}}}}{{\sin {\rm{C\hat BA}}}} = \frac{{{\text{AB}}}}{{\sin {\rm{A\hat CB}}}}\)

correct substitution     (A1)

eg\(\;\;\;\frac{{{\text{AC}}}}{{\sin 44^\circ }} = \frac{{15}}{{\sin 83^\circ }}\)

\(10.4981\)

\({\text{AC}} = 10.5{\text{ }}{\text{ (cm)}}\)     A1     N2

[3 marks]

a.

finding \({\rm{C\hat AB}}\) (seen anywhere)     (A1)

eg\(\;\;\;180^\circ  – 44^\circ  – 83^\circ ,{\rm{ C\hat AB}} = 53^\circ \)

correct substitution for area of triangle \(ABC\)     A1

eg\(\;\;\;\frac{1}{2} \times 15 \times 10.4981 \times \sin 53^\circ \)

62.8813

\({\text{area}} = 62.9{\text{ }}{\text{ (c}}{{\text{m}}^2}{\text{)}}\)     A1     N2

[3 marks]

b.

correct substitution for area of triangle \(DAC\)    (A1)

eg\(\;\;\;\frac{1}{2} \times 6 \times 10.4981 \times \sin \theta \)

attempt to equate area of triangle \(ACD\) to half the area of triangle \(ABC\)     (M1)

eg\(\;\;\;{\text{area ACD}} = \frac{1}{2} \times {\text{ area ABC; 2ACD}} = {\text{ABC}}\)

correct equation     A1

eg\(\;\;\;\frac{1}{2} \times 6 \times 10.4981 \times \sin \theta  = \frac{1}{2}(62.9),{\text{ }}62.9887\sin \theta  = 62.8813,{\text{ }}\sin \theta  = 0.998294\)

\(86.6531\), \(93.3468\)

\(\theta  = 86.7^\circ {\text{ }},{\text{ }}\theta  = 93.3^\circ {\text{ }}\)     A1A1     N2

[5 marks]

c.

Note:     Note: If candidates use an acute angle from part (c) in the cosine rule, award M1A0A0 in part (d).

evidence of choosing cosine rule     (M1)

eg\(\;\;\;{\text{C}}{{\text{D}}^2} = {\text{A}}{{\text{D}}^2} + {\text{A}}{{\text{C}}^2} – 2 \times {\text{AD}} \times {\text{AC}} \times \cos \theta \)

correct substitution into rhs     (A1)

eg\(\;\;\;{\text{C}}{{\text{D}}^2} = {6^2} + {10.498^2} – 2(6)(10.498)\cos 93.336^\circ \)

\(12.3921\)

\(12.4{\text{ }}{\text{ (cm)}}\)     A1     N2

[3 marks]

Total [14 marks]

d.

Question

The following diagram shows a pole BT 1.6 m tall on the roof of a vertical building.

The angle of depression from T to a point A on the horizontal ground is \({35^ \circ }\) .

The angle of elevation of the top of the building from A is \({30^ \circ }\) .



Find the height of the building.

Answer/Explanation

Markscheme

METHOD 1

appropriate approach     M1

e.g. completed diagram

attempt at set up     A1

e.g. correct placement of one angle

\(\tan 30 = \frac{h}{x}\) , \(\tan 35 = \frac{{h + 1.6}}{x}\)     A1A1

attempt to set up equation     M1

e.g. isolate x

correct equation     A1

e.g. \(\frac{h}{{\tan 30}} = \frac{{h + 1.6}}{{\tan 35}}\)

\(h = 7.52\)     A1     N3

METHOD 2

\(\sin 30 = \frac{h}{l}\)     A1

in triangle ATB, \(\widehat A = {5^ \circ }\) , \(\widehat T = {55^ \circ }\)     A1A1

choosing sine rule     M1

correct substitution

e.g. \(\frac{{h/\sin 30}}{{\sin 55}} = \frac{{1.6}}{{\sin 5}}\)     A1

\(h = \frac{{1.6 \times \sin 30 \times \sin 55}}{{\sin 5}}\)     A1

\(h = 7.52\)     A1     N3

[7 marks]

Scroll to Top