IB DP Maths Topic 4.1 Vectors as displacements in the plane and in three dimensions SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Consider the lines \({L_1}\) and \({L_2}\) with equations \({L_1}\) : \(\boldsymbol{r}=\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ – 1\end{array} \right)\) and \({L_2}\) : \(\boldsymbol{r} = \left( \begin{array}{c}1\\1\\ – 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\).

The lines intersect at point \(\rm{P}\).

Find the coordinates of \({\text{P}}\).

[6]
a.

Show that the lines are perpendicular.

[5]
b.

The point \({\text{Q}}(7, 5, 3)\) lies on \({L_1}\). The point \({\text{R}}\) is the reflection of \({\text{Q}}\) in the line \({L_2}\).

Find the coordinates of \({\text{R}}\).

[6]
c.
Answer/Explanation

Markscheme

appropriate approach     (M1)

eg     \(\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ – 1\end{array} \right) = \left( \begin{array}{c}1\\1\\ – 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\), \({L_1} = {L_2}\)

any two correct equations     A1A1

eg     \(11 + 4s = 1 + 2t,{\text{ }}8 + 3s = 1 + t,{\text{ }}2 – s =  – 7 + 11t\)

attempt to solve system of equations     (M1)

eg     \(10 + 4s = 2(7 + 3s), \left\{ {\begin{array}{*{20}{c}} {4s – 2t =  – 10} \\  {3s – t =  – 7} \end{array}} \right.\)

one correct parameter     A1

eg     \(s =  – 2,{\text{ }}t = 1\)

\({\text{P}}(3, 2, 4)\)   (accept position vector)     A1     N3

[6 marks]

a.

choosing correct direction vectors for \({L_1}\) and \({L_2}\)     (A1)(A1)

eg     \(\left( {\begin{array}{*{20}{c}}   4 \\    3 \\    { – 1} \end{array}} \right),\left( {\begin{array}{*{20}{c}}   2 \\   1 \\   {11} \end{array}} \right)\) (or any scalar multiple)

evidence of scalar product (with any vectors)     (M1)

eg     \(a \cdot b\), \(\left( \begin{array}{c}4\\3\\ – 1\end{array} \right) \bullet \left( \begin{array}{c}2\\1\\11\end{array} \right)\)

correct substitution     A1

eg     \(4(2) + 3(1) + ( – 1)(11),{\text{ }}8 + 3 – 11\)

calculating \(a \cdot b = 0\)     A1

Note: Do not award the final A1 without evidence of calculation.

vectors are perpendicular     AG     N0

[5 marks]

b.

Note: Candidates may take different approaches, which do not necessarily involve vectors.

In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.

METHOD 1

attempt to find \(\overrightarrow {{\text{QP}}} \) or \(\overrightarrow {{\text{PQ}}} \)     (M1)

correct working (may be seen on diagram)     A1

eg     \(\overrightarrow {{\text{QP}}} \) = \(\left( \begin{array}{c} – 4\\ – 3\\1\end{array} \right)\), \(\overrightarrow {{\text{PQ}}} \) = \(\left( \begin{array}{c}7\\5\\3\end{array} \right) – \left( \begin{array}{c}3\\2\\4\end{array} \right)\)

recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere)     (R1)

eg     on diagram

\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere)     (R1)

eg     \(\overrightarrow {{\text{QP}}}  = \overrightarrow {{\text{PR}}} \), marked on diagram

correct working     (A1)

eg     \(\left( \begin{array}{c}3\\2\\4\end{array} \right) – \left( \begin{array}{c}7\\5\\3\end{array} \right) = \left( \begin{array}{c}x\\y\\z\end{array} \right) – \left( \begin{array}{c}3\\2\\4\end{array} \right),\left( \begin{array}{c} – 4\\ – 3\\1\end{array} \right) + \left( \begin{array}{c}3\\2\\4\end{array} \right)\)

\({\text{R}}(–1, –1, 5)\) (accept position vector)     A1     N3

METHOD 2 

recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere)     (R1)

eg     on diagram

\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere)     (R1)

eg     \({\text{P}}\) midpoint of \({\text{QR}}\), marked on diagram

valid approach to find one coordinate of mid-point     (M1)

eg     \({x_p} = \frac{{{x_Q} + {x_R}}}{2},{\text{ }}2{y_p} = {y_Q} + {y_R},{\text{ }}\frac{1}{2}\left( {{z_Q} + {z_R}} \right)\)

one correct substitution     A1

eg     \({x_R} = 3 + (3 – 7),{\text{ }}2 = \frac{{5 + {y_R}}}{2},{\text{ }}4 = \frac{1}{2}(z + 3)\)

correct working for one coordinate     (A1)

eg     \({x_R} = 3 – 4,{\text{ }}4 – 5 = {y_R},{\text{ }}8 = (z + 3)\)

\({\text{R}} (-1, -1, 5)\) (accept position vector)     A1     N3

[6 marks]

c.

Question

Two points P and Q have coordinates (3, 2, 5) and (7, 4, 9) respectively.

Let \({\mathop {{\text{PR}}}\limits^ \to  }\) = 6i − j + 3k.

Find \(\mathop {{\text{PQ}}}\limits^ \to  \).

[2]
a.i.

Find \(\left| {\mathop {{\text{PQ}}}\limits^ \to  } \right|\).

[2]
a.ii.

Find the angle between PQ and PR.

[4]
b.

Find the area of triangle PQR.

[2]
c.

Hence or otherwise find the shortest distance from R to the line through P and Q.

[3]
d.
Answer/Explanation

Markscheme

valid approach      (M1)

eg   (7, 4, 9) − (3, 2, 5)  A − B

\(\mathop {{\text{PQ}}}\limits^ \to   = \) 4i + 2j + 4k \(\left( { = \left( \begin{gathered}
4 \hfill \\
2 \hfill \\
4 \hfill \\
\end{gathered} \right)} \right)\)     A1 N2

[2 marks]

a.i.

correct substitution into magnitude formula      (A1)
eg  \(\sqrt {{4^2} + {2^2} + {4^2}} \)

\(\left| {\mathop {{\text{PQ}}}\limits^ \to  } \right| = 6\)     A1 N2

[2 marks]

a.ii.

finding scalar product and magnitudes      (A1)(A1)

scalar product = (4 × 6) + (2 × (−1) + (4 × 3) (= 34)

magnitude of PR = \(\sqrt {36 + 1 + 9}  = \left( {6.782} \right)\)

correct substitution of their values to find cos \({\text{Q}}\mathop {\text{P}}\limits^ \wedge  {\text{R}}\)     M1

eg  cos \({\text{Q}}\mathop {\text{P}}\limits^ \wedge  {\text{R}}\,\,{\text{ = }}\frac{{24 – 2 + 12}}{{\left( 6 \right) \times \left( {\sqrt {46} } \right)}},\,\,0.8355\)

0.581746

\({\text{Q}}\mathop {\text{P}}\limits^ \wedge  {\text{R}}\) = 0.582 radians  or \({\text{Q}}\mathop {\text{P}}\limits^ \wedge  {\text{R}}\) = 33.3°     A1 N3

[4 marks]

b.

correct substitution (A1)
eg    \(\frac{1}{2} \times \left| {\mathop {{\text{PQ}}}\limits^ \to  } \right| \times \left| {\mathop {{\text{PR}}}\limits^ \to  } \right| \times \,\,{\text{sin}}\,P,\,\,\frac{1}{2} \times 6 \times \sqrt {46}  \times \,\,{\text{sin}}\,0.582\)

area is 11.2 (sq. units)      A1 N2

[2 marks]

c.

recognizing shortest distance is perpendicular distance from R to line through P and Q      (M1)

eg  sketch, height of triangle with base \(\left[ {{\text{PQ}}} \right],\,\,\frac{1}{2} \times 6 \times h,\,\,{\text{sin}}\,33.3^\circ  = \frac{h}{{\sqrt {46} }}\)

correct working      (A1)

eg  \(\frac{1}{2} \times 6 \times d = 11.2,\,\,\left| {\mathop {{\text{PR}}}\limits^ \to  } \right| \times \,\,{\text{sin}}\,P,\,\,\sqrt {46}  \times \,\,{\text{sin}}\,33.3^\circ \)

3.72677

distance = 3.73  (units)    A1 N2

[3 marks]

d.
Scroll to Top