IB DP Maths Topic 4.2 Perpendicular vectors; parallel vectors SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let  \({\boldsymbol{v}} = 3{\boldsymbol{i}} + 4{\boldsymbol{j}} + {\boldsymbol{k}}\) and \({\boldsymbol{w}} = {\boldsymbol{i}} + 2{\boldsymbol{j}} – 3{\boldsymbol{k}}\) . The vector \({\boldsymbol{v}} + p{\boldsymbol{w}}\) is perpendicular to w. Find the value of p.

Answer/Explanation

Markscheme

\(p{\boldsymbol{w}} = p{\boldsymbol{i}} + 2p{\boldsymbol{j}} – 3p{\boldsymbol{k}}\) (seen anywhere)     (A1)

attempt to find \({\boldsymbol{v}} + p{\boldsymbol{w}}\)     (M1)

e.g. \(3{\boldsymbol{i}} + 4{\boldsymbol{j}} + {\boldsymbol{k}} + p({\boldsymbol{i}} + 2{\boldsymbol{j}} – 3{\boldsymbol{k}})\)

collecting terms \((3 + p){\boldsymbol{i}} + (4 + 2p){\boldsymbol{j}} + (1 – 3p){\boldsymbol{k}}\)     A1

attempt to find the dot product     (M1)

e.g. \(1(3 + p) + 2(4 + 2p) – 3(1 – 3p)\)

setting their dot product equal to 0     (M1)

e.g. \(1(3 + p) + 2(4 + 2p) – 3(1 – 3p) = 0\)

simplifying     A1

e.g. \(3 + p + 8 + 4p – 3 + 9p = 0\) , \(14p + 8 = 0\)

\(p = – 0.571\) \(\left( { – \frac{8}{{14}}} \right)\)     A1     N3

[7 marks]

Question

Consider the lines \({L_1}\) and \({L_2}\) with equations \({L_1}\) : \(\boldsymbol{r}=\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ – 1\end{array} \right)\) and \({L_2}\) : \(\boldsymbol{r} = \left( \begin{array}{c}1\\1\\ – 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\).

The lines intersect at point \(\rm{P}\).

Find the coordinates of \({\text{P}}\).

[6]
a.

Show that the lines are perpendicular.

[5]
b.

The point \({\text{Q}}(7, 5, 3)\) lies on \({L_1}\). The point \({\text{R}}\) is the reflection of \({\text{Q}}\) in the line \({L_2}\).

Find the coordinates of \({\text{R}}\).

[6]
c.
Answer/Explanation

Markscheme

appropriate approach     (M1)

eg     \(\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ – 1\end{array} \right) = \left( \begin{array}{c}1\\1\\ – 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\), \({L_1} = {L_2}\)

any two correct equations     A1A1

eg     \(11 + 4s = 1 + 2t,{\text{ }}8 + 3s = 1 + t,{\text{ }}2 – s =  – 7 + 11t\)

attempt to solve system of equations     (M1)

eg     \(10 + 4s = 2(7 + 3s), \left\{ {\begin{array}{*{20}{c}} {4s – 2t =  – 10} \\  {3s – t =  – 7} \end{array}} \right.\)

one correct parameter     A1

eg     \(s =  – 2,{\text{ }}t = 1\)

\({\text{P}}(3, 2, 4)\)   (accept position vector)     A1     N3

[6 marks]

a.

choosing correct direction vectors for \({L_1}\) and \({L_2}\)     (A1)(A1)

eg     \(\left( {\begin{array}{*{20}{c}}   4 \\    3 \\    { – 1} \end{array}} \right),\left( {\begin{array}{*{20}{c}}   2 \\   1 \\   {11} \end{array}} \right)\) (or any scalar multiple)

evidence of scalar product (with any vectors)     (M1)

eg     \(a \cdot b\), \(\left( \begin{array}{c}4\\3\\ – 1\end{array} \right) \bullet \left( \begin{array}{c}2\\1\\11\end{array} \right)\)

correct substitution     A1

eg     \(4(2) + 3(1) + ( – 1)(11),{\text{ }}8 + 3 – 11\)

calculating \(a \cdot b = 0\)     A1

Note: Do not award the final A1 without evidence of calculation.

vectors are perpendicular     AG     N0

[5 marks]

b.

Note: Candidates may take different approaches, which do not necessarily involve vectors.

In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.

METHOD 1

attempt to find \(\overrightarrow {{\text{QP}}} \) or \(\overrightarrow {{\text{PQ}}} \)     (M1)

correct working (may be seen on diagram)     A1

eg     \(\overrightarrow {{\text{QP}}} \) = \(\left( \begin{array}{c} – 4\\ – 3\\1\end{array} \right)\), \(\overrightarrow {{\text{PQ}}} \) = \(\left( \begin{array}{c}7\\5\\3\end{array} \right) – \left( \begin{array}{c}3\\2\\4\end{array} \right)\)

recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere)     (R1)

eg     on diagram

\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere)     (R1)

eg     \(\overrightarrow {{\text{QP}}}  = \overrightarrow {{\text{PR}}} \), marked on diagram

correct working     (A1)

eg     \(\left( \begin{array}{c}3\\2\\4\end{array} \right) – \left( \begin{array}{c}7\\5\\3\end{array} \right) = \left( \begin{array}{c}x\\y\\z\end{array} \right) – \left( \begin{array}{c}3\\2\\4\end{array} \right),\left( \begin{array}{c} – 4\\ – 3\\1\end{array} \right) + \left( \begin{array}{c}3\\2\\4\end{array} \right)\)

\({\text{R}}(–1, –1, 5)\) (accept position vector)     A1     N3

METHOD 2 

recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere)     (R1)

eg     on diagram

\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere)     (R1)

eg     \({\text{P}}\) midpoint of \({\text{QR}}\), marked on diagram

valid approach to find one coordinate of mid-point     (M1)

eg     \({x_p} = \frac{{{x_Q} + {x_R}}}{2},{\text{ }}2{y_p} = {y_Q} + {y_R},{\text{ }}\frac{1}{2}\left( {{z_Q} + {z_R}} \right)\)

one correct substitution     A1

eg     \({x_R} = 3 + (3 – 7),{\text{ }}2 = \frac{{5 + {y_R}}}{2},{\text{ }}4 = \frac{1}{2}(z + 3)\)

correct working for one coordinate     (A1)

eg     \({x_R} = 3 – 4,{\text{ }}4 – 5 = {y_R},{\text{ }}8 = (z + 3)\)

\({\text{R}} (-1, -1, 5)\) (accept position vector)     A1     N3

[6 marks]

c.

Question

The following diagram shows two perpendicular vectors u and v.

Let \(w = u – v\). Represent \(w\) on the diagram above.

[2]
a.

Given that \(u = \left( \begin{array}{c}3\\2\\1\end{array} \right)\) and \(v = \left( \begin{array}{c}5\\n\\3\end{array} \right)\), where \(n \in \mathbb{Z}\), find \(n\).

[4]
b.
Answer/Explanation

Markscheme

METHOD 1 A1A1      N2

Note: Award A1 for segment connecting endpoints and A1 for direction (must see arrow).

METHOD 2


 
A1A1      N2

Notes: Award A1 for segment connecting endpoints and A1 for direction (must see arrow).

Additional lines not required.

[2 marks]

a.

evidence of setting scalar product equal to zero (seen anywhere)     R1

eg   u \( \cdot \) v \( = 0,{\text{ }}15 + 2n + 3 = 0\)

correct expression for scalar product     (A1)

eg   \(3 \times 5 + 2 \times n + 1 \times 3,{\text{ }}2n + 18 = 0\)

attempt to solve equation     (M1)

eg   \(2n =  – 18\)

\(n =  – 9\)     A1     N3

[4 marks]

b.

Question

Consider the lines \({L_1}\) , \({L_2}\) , \({L_2}\) , and \({L_4}\) , with respective equations.

\({L_1}\) : \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1\\
2\\
3
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
3\\
{ – 2}\\
1
\end{array}} \right)\)

\({L_2}\)  : \(\left( \begin{array}{l}
x\\
y\\
z
\end{array} \right) = \left( \begin{array}{l}
1\\
2\\
3
\end{array} \right) + p\left( \begin{array}{l}
3\\
2\\
1
\end{array} \right)\)

\({L_3}\) : \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0\\
1\\
0
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
{ – a}
\end{array}} \right)\)

\({L_4}\) : \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = q\left( {\begin{array}{*{20}{c}}
{ – 6}\\
4\\
{ – 2}
\end{array}} \right)\)

Write down the line that is parallel to \({L_4}\) .

[1]
a.

Write down the position vector of the point of intersection of \({L_1}\) and \({L_2}\) .

[1]
b.

Given that \({L_1}\) is perpendicular to \({L_3}\) , find the value of a .

[5]
c.
Answer/Explanation

Markscheme

\({L_1}\)     A1     N1

[1 mark]

a.

\(\left( \begin{array}{l}
1\\
2\\
3
\end{array} \right)\)     A1     N1

[1 mark]

b.

choosing correct direction vectors     A1A1

e.g. \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 2}\\
1
\end{array}} \right)\) , \(\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
{ – a}
\end{array}} \right)\)

recognizing that \({\boldsymbol{a}} \bullet {\boldsymbol{b}} = 0\)     M1

correct substitution     A1

e.g. \( – 3 – 4 – a = 0\)

\(a = – 7\)     A1     N3

[5 marks]

c.
Scroll to Top