IB DP Maths Topic 6.1 Definition of derivative from first principles as f′(x)=limh→0(f(x+h)−f(x)h) SL Paper 1

Question

Let \(f(x) = 1 + {{\text{e}}^{ – x}}\) and \(g(x) = 2x + b\), for \(x \in \mathbb{R}\), where \(b\) is a constant.

Find \((g \circ f)(x)\).

[2]
a.

Given that \(\mathop {\lim }\limits_{x \to  + \infty } (g \circ f)(x) =  – 3\), find the value of \(b\).

[4]
b.
Answer/Explanation

Markscheme

attempt to form composite     (M1)

eg\(\,\,\,\,\,\)\(g(1 + {{\text{e}}^{ – x}})\)

correct function     A1     N2

eg\(\,\,\,\,\,\)\((g \circ f)(x) = 2 + b + 2{{\text{e}}^{ – x}},{\text{ }}2(1 + {{\text{e}}^{ – x}}) + b\)

[2 marks]

a.

evidence of \(\mathop {\lim }\limits_{x \to \infty } (2 + b + 2{{\text{e}}^{ – x}}) = 2 + b + \mathop {\lim }\limits_{x \to \infty } (2{{\text{e}}^{ – x}})\)     (M1)

eg\(\,\,\,\,\,\)\(2 + b + 2{{\text{e}}^{ – \infty }}\), graph with horizontal asymptote when \(x \to \infty \)

Note:     Award M0 if candidate clearly has incorrect limit, such as \(x \to 0,{\text{ }}{{\text{e}}^\infty },{\text{ }}2{{\text{e}}^0}\).

evidence that \({{\text{e}}^{ – x}} \to 0\) (seen anywhere)     (A1)

eg\(\,\,\,\,\,\)\(\mathop {\lim }\limits_{x \to \infty } ({{\text{e}}^{ – x}}) = 0,{\text{ }}1 + {{\text{e}}^{ – x}} \to 1,{\text{ }}2(1) + b =  – 3,{\text{ }}{{\text{e}}^{{\text{large negative number}}}} \to 0\), graph of \(y = {{\text{e}}^{ – x}}\) or

\(y = 2{{\text{e}}^{ – x}}\) with asymptote \(y = 0\), graph of composite function with asymptote \(y =  – 3\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(2 + b =  – 3\)

\(b =  – 5\)     A1     N2

[4 marks]

b.
Scroll to Top