IB DP Maths Topic 6.1 Derivative interpreted as gradient function and as rate of change SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = {x^3} – 4x + 1\) .

Expand \({(x + h)^3}\) .

[2]
a.

Use the formula \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) – f(x)}}{h}\) to show that the derivative of \(f(x)\) is \(3{x^2} – 4\) .

[4]
b.

The tangent to the curve of f at the point \({\text{P}}(1{\text{, }} – 2)\) is parallel to the tangent at a point Q. Find the coordinates of Q.

[4]
c.

The graph of f is decreasing for \(p < x < q\) . Find the value of p and of q.

[3]
d.

Write down the range of values for the gradient of \(f\) .

[2]
e.
Answer/Explanation

Markscheme

attempt to expand     (M1)

\({(x + h)^3} = {x^3} + 3{x^2}h + 3x{h^2} + {h^3}\)     A1     N2

[2 marks]

a.

evidence of substituting \(x + h\)     (M1)

correct substitution     A1

e.g. \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{{{(x + h)}^3} – 4(x + h) + 1 – ({x^3} – 4x + 1)}}{h}\)

simplifying     A1

e.g. \(\frac{{({x^3} + 3{x^2}h + 3x{h^2} + {h^3} – 4x – 4h + 1 – {x^3} + 4x – 1)}}{h}\)

factoring out h     A1

e.g. \(\frac{{h(3{x^2} + 3xh + {h^2} – 4)}}{h}\)

\(f'(x) = 3{x^2} – 4\)     AG     N0

[4 marks]

b.

\(f'(1) = – 1\)    (A1)

setting up an appropriate equation     M1

e.g. \(3{x^2} – 4 = – 1\)

at Q, \(x = – 1,y = 4\) (Q is \(( – 1{\text{, }}4)\))    A1    A1

[4 marks]

c.

recognizing that f is decreasing when \(f'(x) < 0\)     R1

correct values for p and q (but do not accept \(p = 1.15{\text{, }}q = – 1.15\) )     A1A1     N1N1

e.g. \(p = – 1.15{\text{, }}q = 1.15\) ; \( \pm \frac{2}{{\sqrt 3 }}\) ; an interval such as \( – 1.15 \le x \le 1.15\)

[3 marks]

d.

\(f'(x) \ge – 4\) , \(y \ge – 4\) , \(\left[ { – 4,\infty } \right[\)     A2     N2

[2 marks]

e.

Question

Consider the curve \(y = \ln (3x – 1)\) . Let P be the point on the curve where \(x = 2\) .

Write down the gradient of the curve at P.

[2]
a.

The normal to the curve at P cuts the x-axis at R. Find the coordinates of R.

[5]
b.
Answer/Explanation

Markscheme

gradient is \(0.6\)     A2     N2

[2 marks]

a.

at R, \(y = 0\) (seen anywhere)     A1

at \(x = 2\) , \(y = \ln 5\) \(( = 1.609 \ldots )\)     (A1)

gradient of normal \( = – 1.6666 \ldots \)     (A1)

evidence of finding correct equation of normal     A1

e.g. \(y = \ln 5 = – \frac{5}{3}(x – 2)\) , \(y = – 1.67x + c\)

\(x = 2.97\) (accept 2.96)     A1

coordinates of R are (2.97,0)     N3

[5 marks]

b.

Question

Consider the curve with equation \(f(x) = p{x^2} + qx\) , where p and q are constants. The point \({\text{A}}(1{\text{, }}3)\) lies on the curve. The tangent to the curve at A has gradient \(8\). Find the value of p and of q .

Answer/Explanation

Markscheme

substituting \(x = 1\) , \(y = 3\) into \(f(x)\)     (M1)

\(3 = p + q\)     A1

finding derivative     (M1)

\(f'(x) = 2px + q\)     A1

correct substitution, \(2p + q = 8\)     A1

\(p = 5\) , \(q = – 2\)     A1A1     N2N2

[7 marks]

Question

Let \(f(x) = A{{\rm{e}}^{kx}} + 3\) . Part of the graph of f is shown below.


The y-intercept is at (0, 13) .

Show that \(A = 10\) .

[2]
a.

Given that \(f(15) = 3.49\) (correct to 3 significant figures), find the value of k.

[3]
b.

(i)     Using your value of k , find \(f'(x)\) .

(ii)    Hence, explain why f is a decreasing function.

(iii)   Write down the equation of the horizontal asymptote of the graph f .

[5]
c(i), (ii) and (iii).

Let \(g(x) = – {x^2} + 12x – 24\) .

Find the area enclosed by the graphs of f and g .

[6]
d.
Answer/Explanation

Markscheme

substituting (0, 13) into function     M1 

e.g. \(13 = A{{\rm{e}}^0} + 3\)

\(13 = A + 3\)     A1

\(A = 10\)     AG     N0

[2 marks]

a.

substituting into \(f(15) = 3.49\)     A1

e.g. \(3.49 = 10{{\rm{e}}^{15k}} + 3\) , \(0.049 = {{\rm{e}}^{15k}}\)

evidence of solving equation     (M1)

e.g. sketch, using \(\ln \)

\(k = – 0.201\) (accept \(\frac{{\ln 0.049}}{{15}}\) )     A1     N2

[3 marks]

b.

(i) \(f(x) = 10{{\rm{e}}^{ – 0.201x}} + 3\)

\(f(x) = 10{{\rm{e}}^{ – 0.201x}} \times – 0.201\) \(( = – 2.01{{\rm{e}}^{ – 0.201x}})\)     A1A1A1     N3

Note: Award A1 for \(10{{\rm{e}}^{ – 0.201x}}\) , A1 for \( \times – 0.201\) , A1 for the derivative of 3 is zero.

(ii) valid reason with reference to derivative     R1     N1

e.g. \(f'(x) < 0\) , derivative always negative

(iii) \(y = 3\)     A1     N1

[5 marks]

c(i), (ii) and (iii).

finding limits \(3.8953 \ldots \), \(8.6940 \ldots \) (seen anywhere)     A1A1

evidence of integrating and subtracting functions     (M1)

correct expression     A1

e.g. \(\int_{3.90}^{8.69} {g(x) – f(x){\rm{d}}x} \) , \(\int_{3.90}^{8.69} {\left[ {\left( { – {x^2} + 12x – 24} \right) – \left( {10{{\rm{e}}^{ – 0.201x}} + 3} \right)} \right]} {\rm{d}}x\)

area \(= 19.5\)     A2     N4

[6 marks]

d.

Question

The following diagram shows a waterwheel with a bucket. The wheel rotates at a constant rate in an anticlockwise (counter-clockwise) direction.


The diameter of the wheel is 8 metres. The centre of the wheel, A, is 2 metres above the water level. After t seconds, the height of the bucket above the water level is given by \(h = a\sin bt + 2\) .

Show that \(a = 4\) .

[2]
a.

The wheel turns at a rate of one rotation every 30 seconds.

Show that \(b = \frac{\pi }{{15}}\) .

[2]
b.

In the first rotation, there are two values of t when the bucket is descending at a rate of \(0.5{\text{ m}}{{\text{s}}^{ – 1}}\) .

Find these values of t .

[6]
c.

In the first rotation, there are two values of t when the bucket is descending at a rate of \(0.5{\text{ m}}{{\text{s}}^{ – 1}}\) .

Determine whether the bucket is underwater at the second value of t .

[4]
d.
Answer/Explanation

Markscheme

METHOD 1

evidence of recognizing the amplitude is the radius     (M1)

e.g. amplitude is half the diameter

\(a = \frac{8}{2}\)     A1

\(a = 4\)     AG     N0

METHOD 2

evidence of recognizing the maximum height      (M1)

e.g. \(h = 6\) , \(a\sin bt + 2 = 6\)

correct reasoning

e.g. \(a\sin bt = 4\) and \(\sin bt\) has amplitude of 1     A1

\(a = 4\)     AG     N0

[2 marks]

a.

METHOD 1

period = 30     (A1)

\(b = \frac{{2\pi }}{{30}}\)     A1

\(b = \frac{\pi }{{15}}\)     AG    N0

METHOD 2

correct equation    (A1)

e.g. \(2 = 4\sin 30b + 2\) , \(\sin 30b = 0\)

\(30b = 2\pi \)     A1

\(b = \frac{\pi }{{15}}\)     AG     N0

[2 marks]

b.

recognizing \(h'(t) = – 0.5\) (seen anywhere)     R1

attempting to solve     (M1)

e.g. sketch of \(h’\) , finding \(h’\)

correct work involving \(h’\)     A2

e.g. sketch of \(h’\) showing intersection, \( – 0.5 = \frac{{4\pi }}{{15}}\cos \left( {\frac{\pi }{{15}}t} \right)\)

\(t = 10.6\) , \(t = 19.4\)     A1A1     N3

[6 marks]

c.

METHOD 1

valid reasoning for their conclusion (seen anywhere)     R1

e.g. \(h(t) < 0\) so underwater; \(h(t) > 0\) so not underwater

evidence of substituting into h     (M1)

e.g. \(h(19.4)\) , \(4\sin \frac{{19.4\pi }}{{15}} + 2\)

correct calculation     A1

e.g. \(h(19.4) = – 1.19\)

correct statement     A1     N0

e.g. the bucket is underwater, yes

METHOD 2

valid reasoning for their conclusion (seen anywhere)     R1

e.g. \(h(t) < 0\) so underwater; \(h(t) > 0\) so not underwater

evidence of valid approach     (M1)

e.g. solving \(h(t) = 0\) , graph showing region below x-axis

correct roots     A1

e.g. \(17.5\), \(27.5\)

correct statement     A1     N0

e.g. the bucket is underwater, yes

[4 marks]

d.

Question

Let \(f(x) = \frac{{20x}}{{{{\rm{e}}^{0.3x}}}}\) , for \(0 \le x \le 20\) .

Sketch the graph of f .

[3]
a.

(i)     Write down the x-coordinate of the maximum point on the graph of f .

(ii)    Write down the interval where f is increasing.

[3]
b(i) and (ii).

Show that \(f'(x) = \frac{{20 – 6x}}{{{{\rm{e}}^{0.3x}}}}\) .

[5]
c.

Find the interval where the rate of change of f is increasing.

[4]
d.
Answer/Explanation

Markscheme


     A1A1A1     N3

Note: Award A1 for approximately correct shape with inflexion/change of curvature, A1 for maximum skewed to the left, A1 for asymptotic behaviour to the right.

[3 marks]

a.

(i) \(x = 3.33\)     A1     N1

(ii) correct interval, with right end point \(3\frac{1}{3}\)     A1A1     N2

e.g. \(0 < x \le 3.33\) , \(0 \le x < 3\frac{1}{3}\)

Note: Accept any inequalities in the right direction.

[3 marks]

b(i) and (ii).

valid approach     (M1)

e.g. quotient rule, product rule

2 correct derivatives (must be seen in product or quotient rule)     (A1)(A1)

e.g. \(20\) , \(0.3{{\rm{e}}^{0.3x}}\) or \( – 0.3{{\rm{e}}^{ – 0.3x}}\)

correct substitution into product or quotient rule     A1

e.g. \(\frac{{20{{\rm{e}}^{0.3x}} – 20x(0.3){{\rm{e}}^{0.3x}}}}{{{{({{\rm{e}}^{0.3x}})}^2}}}\) , \(20{{\rm{e}}^{ – 0.3x}} + 20x( – 0.3){{\rm{e}}^{ – 0.3x}}\)

correct working     A1

e.g. \(\frac{{20{{\rm{e}}^{0.3x}} – 6x{{\rm{e}}^{0.3x}}}}{{{{\rm{e}}^{0.6x}}}}\) , \(\frac{{{{\rm{e}}^{0.3x}}(20 – 20x(0.3))}}{{{{{\rm{(}}{{\rm{e}}^{0.3x}})}^2}}}\) , \({{\rm{e}}^{ – 0.3x}}(20 + 20x( – 0.3))\)

\(f'(x) = \frac{{20 – 6x}}{{{{\rm{e}}^{0.3x}}}}\)     AG     N0

[5 marks]

c.

consideration of \(f’\) or \(f”\)     (M1)

valid reasoning     R1

e.g. sketch of \(f’\) , \(f”\) is positive, \(f” = 0\) , reference to minimum of \(f’\)

correct value \(6.6666666 \ldots \) \(\left( {6\frac{2}{3}} \right)\)     (A1)

correct interval, with both endpoints     A1     N3

e.g. \(6.67 < x \le 20\) , \(6\frac{2}{3} \le x < 20\)

[4 marks]

d.

Question

Let \(f(x) = \frac{{100}}{{(1 + 50{{\rm{e}}^{ – 0.2x}})}}\) . Part of the graph of \(f\) is shown below.

Write down \(f(0)\) .

[1]
a.

Solve \(f(x) = 95\) .

[2]
b.

Find the range of \(f\) .

[3]
c.

Show that \(f'(x) = \frac{{1000{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) .

[5]
d.

Find the maximum rate of change of \(f\) .

[4]
e.
Answer/Explanation

Markscheme

\(f(0) = \frac{{100}}{{51}}\) (exact), \(1.96\)     A1     N1

[1 mark]

a.

setting up equation     (M1)

eg   \(95 = \frac{{100}}{{1 + 50{{\rm{e}}^{ – 0.2x}}}}\) , sketch of graph with horizontal line at \(y = 95\)

\(x = 34.3\)     A1     N2

[2 marks]

b.

upper bound of \(y\) is \(100\)     (A1)

lower bound of \(y\) is \(0\)     (A1)

range is \(0 < y < 100\)     A1     N3

[3 marks]

c.

METHOD 1

setting function ready to apply the chain rule     (M1)

eg   \(100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 1}}\) 

evidence of correct differentiation (must be substituted into chain rule)     (A1)(A1)

eg   \(u’ = – 100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}\) , \(v’ = (50{{\rm{e}}^{ – 0.2x}})( – 0.2)\) 

correct chain rule derivative     A1

eg   \(f'(x) = – 100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}(50{{\rm{e}}^{ – 0.2x}})( – 0.2)\) 

correct working clearly leading to the required answer     A1

eg   \(f'(x) = 1000{{\rm{e}}^{ – 0.2x}}{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}\) 

\(f'(x) = \frac{{1000{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)     AG     N0

METHOD 2

attempt to apply the quotient rule (accept reversed numerator terms)     (M1)

eg   \(\frac{{vu’ – uv’}}{{{v^2}}}\) , \(\frac{{uv’ – vu’}}{{{v^2}}}\)

evidence of correct differentiation inside the quotient rule     (A1)(A1)

eg   \(f'(x) = \frac{{(1 + 50{{\rm{e}}^{ – 0.2x}})(0) – 100(50{{\rm{e}}^{ – 0.2x}} \times  – 0.2)}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) , \(\frac{{100( – 10){{\rm{e}}^{ – 0.2x}} – 0}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

any correct expression for derivative (\(0\) may not be explicitly seen)     (A1)

eg   \(\frac{{ – 100(50{{\rm{e}}^{ – 0.2x}} \times  – 0.2)}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

correct working clearly leading to the required answer     A1

eg   \(f'(x) = \frac{{0 – 100( – 10){{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) , \(\frac{{ – 100( – 10){{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

\(f'(x) = \frac{{{\rm{1000}}{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)     AG     N0

[5 marks]

d.

METHOD 1

sketch of \(f'(x)\)     (A1)

eg

recognizing maximum on \(f'(x)\)     (M1)

eg dot on max of sketch

finding maximum on graph of \(f'(x)\)     A1

eg   (\(19.6\), \(5\)) , \(x = 19.560 \ldots \)

maximum rate of increase is \(5\)     A1 N2

METHOD 2

recognizing \(f”(x) = 0\)     (M1)

finding any correct expression for  \(f”(x) = 0\)     (A1)

eg   \(\frac{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}( – 200{{\rm{e}}^{ – 0.2x}}) – (1000{{\rm{e}}^{ – 0.2x}})(2(1 + 50{{\rm{e}}^{ – 0.2x}})( – 10{{\rm{e}}^{ – 0.2x}}))}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^4}}}\)

finding \(x = 19.560 \ldots \)     A1

maximum rate of increase is \(5\)     A1     N2

[4 marks]

e.

Question

Let \(f(x) = {{\rm{e}}^{\frac{x}{4}}}\) and \(g(x) = mx\) , where \(m \ge 0\) , and \( – 5 \le x \le 5\) . Let \(R\) be the region enclosed by the \(y\)-axis, the graph of \(f\) , and the graph of \(g\) .

Let \(m = 1\).

(i)     Sketch the graphs of \(f\) and \(g\) on the same axes.

(ii)     Find the area of \(R\) .

[7]
a.

Find the area of \(R\) .

[5]
a.ii.

Consider all values of \(m\) such that the graphs of \(f\) and \(g\) intersect. Find the value of \(m\) that gives the greatest value for the area of \(R\) .

[8]
b.
Answer/Explanation

Markscheme

 (i)

   A1A1     N2

Notes: Award A1 for the graph of \(f\) positive, increasing and concave up.

    Award A1 for graph of \(g\) increasing and linear with \(y\)-intercept of \(0\).

    Penalize one mark if domain is not [\( – 5\), \(5\)] and/or if \(f\) and \(g\) do not intersect in the first quadrant.

[2 marks]

(ii)
attempt to find intersection of the graphs of \(f\) and \(g\)     (M1)

eg   \({{\rm{e}}^{\frac{x}{4}}} = x\)

\(x = 1.42961 \ldots \)     A1

valid attempt to find area of \(R\)     (M1)
eg   \(\int {(x – {{\rm{e}}^{\frac{x}{4}}}} ){\rm{d}}x\) ,  \(\int_0^1 {(g – f)} \) , \(\int {(f – g)} \)
area \( = 0.697\)     A2     N3

[5 marks]

a.

attempt to find intersection of the graphs of \(f\) and \(g\)     (M1)

eg   \({{\rm{e}}^{\frac{x}{4}}} = x\)

\(x = 1.42961 \ldots \)     A1

valid attempt to find area of \(R\)     (M1)

eg   \(\int {(x – {{\rm{e}}^{\frac{x}{4}}}} ){\rm{d}}x\) ,  \(\int_0^1 {(g – f)} \) , \(\int {(f – g)} \)

area \( = 0.697\)     A2     N3

[5 marks]

a.ii.

recognize that area of \(R\) is a maximum at point of tangency     (R1)

eg   \(m = f'(x)\)

equating functions     (M1)

eg   \(f(x) = g(x)\) , \({{\rm{e}}^{\frac{x}{4}}} = mx\)

\(f'(x) = \frac{1}{4}{{\rm{e}}^{\frac{x}{4}}}\)     (A1)

equating gradients     (A1)

eg   \(f'(x) = g'(x)\) , \(\frac{1}{4}{{\rm{e}}^{\frac{x}{4}}} = m\)

attempt to solve system of two equations for \(x\)     (M1)

eg   \(\frac{1}{4}{{\rm{e}}^{\frac{x}{4}}} \times x = {{\rm{e}}^{\frac{x}{4}}}\)

\(x = 4\)     (A1)

attempt to find \(m\)     (M1)

eg   \(f'(4)\) , \(\frac{1}{4}{{\rm{e}}^{\frac{4}{4}}}\)

\(m = \frac{1}{4}e\) (exact), \(0.680\)     A1     N3

[8 marks]

b.

Question

Consider the graph of the semicircle given by \(f(x) = \sqrt {6x – {x^2}} \), for \(0 \leqslant x \leqslant 6\). A rectangle \(\rm{PQRS}\) is drawn with upper vertices \(\rm{R}\) and \(\rm{S}\) on the graph of \(f\), and \(\rm{PQ}\) on the \(x\)-axis, as shown in the following diagram.

Let \({\text{OP}} = x\).

(i)     Find \({\text{PQ}}\), giving your answer in terms of \(x\).

(ii)     Hence, write down an expression for the area of the rectangle, giving your answer in terms of \(x\).

[[N/A]]
a.

Find the rate of change of area when \(x = 2\).

[2]
b(i).

The area is decreasing for \(a < x < b\). Find the value of \(a\) and of \(b\).

[2]
b(ii).
Answer/Explanation

Markscheme

(i)     valid approach (may be seen on diagram)     (M1)

eg     \({\text{Q}}\) to \(6\) is \(x\)

\({\text{PQ}} = 6 – 2x\)     A1     N2

(ii)     \(A = (6 – 2x)\sqrt {6x – {x^2}} \)     A1     N1

[3 marks]

a.

recognising \(\frac{{{\text{d}}A}}{{{\text{d}}x}}\) at \(x = 2\) needed (must be the derivative of area)     (M1)

\(\frac{{{\text{d}}A}}{{{\text{d}}x}} =  – \frac{{7\sqrt 2 }}{2},{\text{ }} – 4.95\)     A1     N2

[2 marks]

b(i).

\(a = 0.879{\text{  }}b = 3\)     A1A1     N2

[4 marks]

b(ii).

Question

The population of deer in an enclosed game reserve is modelled by the function \(P(t) = 210\sin (0.5t – 2.6) + 990\), where \(t\) is in months, and \(t = 1\) corresponds to 1 January 2014.

Find the number of deer in the reserve on 1 May 2014.

[3]
a.

Find the rate of change of the deer population on 1 May 2014.

[2]
b(i).

Interpret the answer to part (i) with reference to the deer population size on 1 May 2014.

[1]
b(ii).
Answer/Explanation

Markscheme

\(t = 5\)     (A1)

correct substitution into formula     (A1)

eg     \(210\sin (0.5 \times 5 – 2.6) + 990,{\text{ }}P(5)\)

\(969.034982 \ldots \)

969 (deer) (must be an integer)     A1     N3

[3 marks]

a.

evidence of considering derivative     (M1)

eg     \(P’\)

\(104.475\)

\(104\) (deer per month)     A1     N2

[2 marks]

b(i).

(the deer population size is) increasing     A1     N1

[1 mark]

b(ii).

Question

Let \(f(x) = \frac{{\ln (4x)}}{x}\) for \(0 < x \le 5\).

Points \({\text{P}}(0.25,{\text{ }}0)\) and \(Q\) are on the curve of \(f\). The tangent to the curve of \(f\) at \(P\) is perpendicular to the tangent at \(Q\). Find the coordinates of \(Q\).

Answer/Explanation

Markscheme

recognizing that the gradient of tangent is the derivative     (M1)

eg\(\;\;\;f’\)

finding the gradient of \(f\) at \(P\)     (A1)

eg\(\;\;\;f'(0.25) = 16\)

evidence of taking negative reciprocal of their gradient at \(P\)     (M1)

eg\(\;\;\;\frac{{ – 1}}{m},{\text{ }} – \frac{1}{{f'(0.25)}}\)

equating derivatives     M1

eg\(\;\;\;f'(x) = \frac{{ – 1}}{{16}},{\text{ }}f’ =  – \frac{1}{m},{\text{ }}\frac{{x\left( {\frac{1}{x}} \right) – \ln (4x)}}{{{x^2}}} = 16\)

finding the \(x\)-coordinate of \(Q\), \(x = 0.700750\)

\(x = 0.701\)     A1     N3

attempt to substitute their \(x\) into \(f\) to find the \(y\)-coordinate of \(Q\)     (M1)

eg\(\;\;\;f(0.7)\)

\(y = 1.47083\)

\(y = 1.47\)     A1     N2

[7 marks]

Question

Let \(f(x) = \frac{1}{{x – 1}} + 2\), for \(x > 1\).

Let \(g(x) = a{e^{ – x}} + b\), for \(x \geqslant 1\). The graphs of \(f\) and \(g\) have the same horizontal asymptote.

Write down the equation of the horizontal asymptote of the graph of \(f\).

[2]
a.

Find \(f'(x)\).

[2]
b.

Write down the value of \(b\).

[2]
c.

Given that \(g'(1) =  – e\), find the value of \(a\).

[4]
d.

There is a value of \(x\), for \(1 < x < 4\), for which the graphs of \(f\) and \(g\) have the same gradient. Find this gradient.

[4]
e.
Answer/Explanation

Markscheme

\(y = 2\) (correct equation only)     A2     N2

[2 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\({(x – 1)^{ – 1}} + 2,{\text{ }}f'(x) = \frac{{0(x – 1) – 1}}{{{{(x – 1)}^2}}}\)

\( – {(x – 1)^{ – 2}},{\text{ }}f'(x) = \frac{{ – 1}}{{{{(x – 1)}^2}}}\)    A1     N2

[2 marks]

b.

correct equation for the asymptote of \(g\)

eg\(\,\,\,\,\,\)\(y = b\)     (A1)

\(b = 2\)     A1     N2

[2 marks]

c.

correct derivative of g (seen anywhere)     (A2)

eg\(\,\,\,\,\,\)\(g'(x) =  – a{{\text{e}}^{ – x}}\)

correct equation     (A1)

eg\(\,\,\,\,\,\)\( – {\text{e}} =  – a{{\text{e}}^{ – 1}}\)

7.38905

\(a = {{\text{e}}^2}{\text{ }}({\text{exact}}),{\text{ }}7.39\)     A1     N2

[4 marks]

d.

attempt to equate their derivatives     (M1)

eg\(\,\,\,\,\,\)\(f'(x) = g'(x),{\text{ }}\frac{{ – 1}}{{{{(x – 1)}^2}}} =  – a{{\text{e}}^{ – x}}\)

valid attempt to solve their equation     (M1)

eg\(\,\,\,\,\,\)correct value outside the domain of \(f\) such as 0.522 or 4.51,

M16/5/MATME/SP2/ENG/TZ2/09.e/M

correct solution (may be seen in sketch)     (A1)

eg\(\,\,\,\,\,\)\(x = 2,{\text{ }}(2,{\text{ }} – 1)\)

gradient is \( – 1\)     A1     N3

[4 marks]

e.

Question

The following diagram shows the graph of \(f(x) = a\sin bx + c\), for \(0 \leqslant x \leqslant 12\).

N16/5/MATME/SP2/ENG/TZ0/10

The graph of \(f\) has a minimum point at \((3,{\text{ }}5)\) and a maximum point at \((9,{\text{ }}17)\).

The graph of \(g\) is obtained from the graph of \(f\) by a translation of \(\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)\). The maximum point on the graph of \(g\) has coordinates \((11.5,{\text{ }}17)\).

The graph of \(g\) changes from concave-up to concave-down when \(x = w\).

(i)     Find the value of \(c\).

(ii)     Show that \(b = \frac{\pi }{6}\).

(iii)     Find the value of \(a\).

[6]
a.

(i)     Write down the value of \(k\).

(ii)     Find \(g(x)\).

[3]
b.

(i)     Find \(w\).

(ii)     Hence or otherwise, find the maximum positive rate of change of \(g\).

[6]
c.
Answer/Explanation

Markscheme

(i)     valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{5 + 17}}{2}\)

\(c = 11\)    A1     N2

(ii)     valid approach     (M1)

eg\(\,\,\,\,\,\)period is 12, per \( = \frac{{2\pi }}{b},{\text{ }}9 – 3\)

\(b = \frac{{2\pi }}{{12}}\)    A1

\(b = \frac{\pi }{6}\)     AG     N0

(iii)     METHOD 1

valid approach     (M1)

eg\(\,\,\,\,\,\)\(5 = a\sin \left( {\frac{\pi }{6} \times 3} \right) + 11\), substitution of points

\(a =  – 6\)     A1     N2

METHOD 2

valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{17 – 5}}{2}\), amplitude is 6

\(a =  – 6\)     A1     N2

[6 marks]

a.

(i)     \(k = 2.5\)     A1     N1

(ii)     \(g(x) =  – 6\sin \left( {\frac{\pi }{6}(x – 2.5)} \right) + 11\)     A2     N2

[3 marks]

b.

(i)     METHOD 1 Using \(g\)

recognizing that a point of inflexion is required     M1

eg\(\,\,\,\,\,\)sketch, recognizing change in concavity

evidence of valid approach     (M1)

eg\(\,\,\,\,\,\)\(g”(x) = 0\), sketch, coordinates of max/min on \({g’}\)

\(w = 8.5\) (exact)     A1     N2

METHOD 2 Using \(f\)

recognizing that a point of inflexion is required     M1

eg\(\,\,\,\,\,\)sketch, recognizing change in concavity

evidence of valid approach involving translation     (M1)

eg\(\,\,\,\,\,\)\(x = w – k\), sketch, \(6 + 2.5\)

\(w = 8.5\) (exact)     A1     N2

(ii)     valid approach involving the derivative of \(g\) or \(f\) (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)\(g'(w),{\text{ }} – \pi \cos \left( {\frac{\pi }{6}x} \right)\), max on derivative, sketch of derivative

attempt to find max value on derivative     M1

eg\(\,\,\,\,\,\)\( – \pi \cos \left( {\frac{\pi }{6}(8.5 – 2.5)} \right),{\text{ }}f'(6)\), dot on max of sketch

3.14159

max rate of change \( = \pi \) (exact), 3.14     A1     N2

[6 marks]

c.

Question

Let \(f(x) =  – 0.5{x^4} + 3{x^2} + 2x\). The following diagram shows part of the graph of \(f\).

M17/5/MATME/SP2/ENG/TZ2/08

There are \(x\)-intercepts at \(x = 0\) and at \(x = p\). There is a maximum at A where \(x = a\), and a point of inflexion at B where \(x = b\).

Find the value of \(p\).

[2]
a.

Write down the coordinates of A.

[2]
b.i.

Write down the rate of change of \(f\) at A.

[1]
b.ii.

Find the coordinates of B.

[4]
c.i.

Find the the rate of change of \(f\) at B.

[3]
c.ii.

Let \(R\) be the region enclosed by the graph of \(f\) , the \(x\)-axis, the line \(x = b\) and the line \(x = a\). The region \(R\) is rotated 360° about the \(x\)-axis. Find the volume of the solid formed.

[3]
d.
Answer/Explanation

Markscheme

evidence of valid approach     (M1)

eg\(\,\,\,\,\,\)\(f(x) = 0,{\text{ }}y = 0\)

2.73205

\(p = 2.73\)     A1     N2

[2 marks]

a.

1.87938, 8.11721

\((1.88,{\text{ }}8.12)\)     A2     N2

[2 marks]

b.i.

rate of change is 0 (do not accept decimals)     A1     N1

[1 marks]

b.ii.

METHOD 1 (using GDC)

valid approach     M1

eg\(\,\,\,\,\,\)\(f’’ = 0\), max/min on \(f’,{\text{ }}x =  – 1\)

sketch of either \(f’\) or \(f’’\), with max/min or root (respectively)     (A1)

\(x = 1\)     A1     N1

Substituting their \(x\) value into \(f\)     (M1)

eg\(\,\,\,\,\,\)\(f(1)\)

\(y = 4.5\)     A1     N1

METHOD 2 (analytical)

\(f’’ =  – 6{x^2} + 6\)     A1

setting \(f’’ = 0\)     (M1)

\(x = 1\)     A1     N1

substituting their \(x\) value into \(f\)     (M1)

eg\(\,\,\,\,\,\)\(f(1)\)

\(y = 4.5\)     A1     N1

[4 marks]

c.i.

recognizing rate of change is \(f’\)     (M1)

eg\(\,\,\,\,\,\)\(y’,{\text{ }}f’(1)\)

rate of change is 6     A1     N2

[3 marks]

c.ii.

attempt to substitute either limits or the function into formula     (M1)

involving \({f^2}\) (accept absence of \(\pi \) and/or \({\text{d}}x\))

eg\(\,\,\,\,\,\)\(\pi \int {{{( – 0.5{x^4} + 3{x^2} + 2x)}^2}{\text{d}}x,{\text{ }}\int_1^{1.88} {{f^2}} } \)

128.890

\({\text{volume}} = 129\)     A2     N3

[3 marks]

d.

Question

Let \(f(x) = 4x – {{\rm{e}}^{x – 2}} – 3\) , for \(0 \le x \le 5\) .

Find the x-intercepts of the graph of f .

[3]
a.

On the grid below, sketch the graph of f .


[3]
b.

Write down the gradient of the graph of f at \(x = 3\) .

[1]
c.
Answer/Explanation

Markscheme

intercepts when \(f(x) = 0\)     M1

(0.827, 0) (4.78, 0) (accept \(x = 0.827\), \(x = 4.78\) )     A1A1     N3

[3 marks]

a.


     A1A1A1     N3

Note: Award A1 for maximum point in circle, A1 for x-intercepts in circles, A1 for correct shape (y approximately greater than \( – 3.14\)).

[3 marks]

b.

gradient is 1.28     A1     N1

[1 mark]

c.
Scroll to Top