IB DP Maths Topic 6.1 Tangents and normals, and their equations SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = {{\rm{e}}^x}(1 – {x^2})\) .

Part of the graph of \(y = f(x)\), for \( – 6 \le x \le 2\) , is shown below. The x-coordinates of the local minimum and maximum points are r and s respectively.


Show that \(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\) . 

[3]
a.

Write down the equation of the horizontal asymptote.

[1]
b.

Write down the value of r and of s.

[4]
c.

Let L be the normal to the curve of f at \({\text{P}}(0{\text{, }}1)\) . Show that L has equation \(x + y = 1\) .

[4]
d.

Let R be the region enclosed by the curve \(y = f(x)\) and the line L.

(i)     Find an expression for the area of R.

(ii)    Calculate the area of R.

[5]
e(i) and (ii).
Answer/Explanation

Markscheme

evidence of using the product rule     M1

\(f'(x) = {{\rm{e}}^x}(1 – {x^2}) + {{\rm{e}}^x}( – 2x)\)     A1A1

Note: Award A1 for \({{\rm{e}}^x}(1 – {x^2})\) , A1 for \({{\rm{e}}^x}( – 2x)\) .

\(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\)     AG     N0

[3 marks]

a.

\(y = 0\)     A1     N1

[1 mark]

b.

at the local maximum or minimum point

\(f'(x) = 0\) \(({{\rm{e}}^x}(1 – 2x – {x^2}) = 0)\)     (M1)

\( \Rightarrow 1 – 2x – {x^2} = 0\)     (M1)

\(r = – 2.41\) \(s = 0.414\)     A1A1     N2N2

[4 marks]

c.

\(f'(0) = 1\)     A1

gradient of the normal \(= – 1\)     A1

evidence of substituting into an equation for a straight line     (M1)

correct substitution     A1

e.g. \(y – 1 = – 1(x – 0)\) , \(y – 1 = – x\) , \(y = – x + 1\)

\(x + y = 1\)     AG     N0

[4 marks]

d.

(i) intersection points at \(x = 0\) and \(x = 1\) (may be seen as the limits)     (A1)

approach involving subtraction and integrals     (M1)

fully correct expression     A2     N4

e.g. \(\int_0^1 {\left( {{{\rm{e}}^x}(1 – {x^2}) – (1 – x)} \right)} {\rm{d}}x\) , \(\int_0^1 {f(x){\rm{d}}x – \int_0^1 {(1 – x){\rm{d}}x} } \)

(ii) area \(R = 0.5\)     A1     N1

[5 marks]

e(i) and (ii).

Question

Let \(f(x) = {{\rm{e}}^{2x}}\cos x\) , \( – 1 \le x \le 2\) .

Show that \(f'(x) = {{\rm{e}}^{2x}}(2\cos x – \sin x)\) .

[3]
a.

Let the line L be the normal to the curve of f at \(x = 0\) .

Find the equation of L .

[5]
b.

The graph of f and the line L intersect at the point (0, 1) and at a second point P.

(i)     Find the x-coordinate of P.

(ii)    Find the area of the region enclosed by the graph of f and the line L .

[6]
c(i) and (ii).
Answer/Explanation

Markscheme

correctly finding the derivative of  \({{\rm{e}}^{2x}}\) , i.e. \(2{{\rm{e}}^{2x}}\)     A1

correctly finding the derivative of  \(\cos x\) , i.e. \( – \sin x\)     A1

evidence of using the product rule, seen anywhere     M1

e.g. \(f'(x) = 2{{\rm{e}}^{2x}}\cos x – {{\rm{e}}^{2x}}\sin x\)

\(f'(x) = 2{{\rm{e}}^{2x}}(2\cos x – \sin x)\)     AG     N0

[3 marks]

a.

evidence of finding \(f(0) = 1\) , seen anywhere     A1

attempt to find the gradient of f     (M1)

e.g. substituting \(x = 0\) into \(f'(x)\)

value of the gradient of f     A1

e.g. \(f'(0) = 2\) , equation of tangent is \(y = 2x + 1\)

gradient of normal \( = – \frac{1}{2}\)     (A1)

\(y – 1 = – \frac{1}{2}x\left( {y = – \frac{1}{2}x + 1} \right)\)     A1     N3

[5 marks]

b.

(i) evidence of equating correct functions     M1

e.g. \({{\rm{e}}^{2x}}\cos x = – \frac{1}{2}x + 1\) , sketch showing intersection of graphs    

\(x = 1.56\)     A1     N1

(ii) evidence of approach involving subtraction of integrals/areas     (M1)

e.g. \(\int {\left[ {f(x) – g(x)} \right]} {\rm{d}}x\) , \(\int {f(x)} {\rm{d}}x – {\text{area under trapezium}}\)

fully correct integral expression     A2

e.g. \(\int_0^{1.56} {\left[ {{{\rm{e}}^{2x}}\cos x – \left( { – \frac{1}{2}x + 1} \right)} \right]} {\rm{d}}x\) , \(\int_0^{1.56} {{{\rm{e}}^{2x}}\cos x} {\rm{d}}x – 0.951 \ldots \)

\({\rm{area}} = 3.28\)     A1     N2

[6 marks]

c(i) and (ii).

Question

Consider the curve \(y = \ln (3x – 1)\) . Let P be the point on the curve where \(x = 2\) .

Write down the gradient of the curve at P.

[2]
a.

The normal to the curve at P cuts the x-axis at R. Find the coordinates of R.

[5]
b.
Answer/Explanation

Markscheme

gradient is \(0.6\)     A2     N2

[2 marks]

a.

at R, \(y = 0\) (seen anywhere)     A1

at \(x = 2\) , \(y = \ln 5\) \(( = 1.609 \ldots )\)     (A1)

gradient of normal \( = – 1.6666 \ldots \)     (A1)

evidence of finding correct equation of normal     A1

e.g. \(y = \ln 5 = – \frac{5}{3}(x – 2)\) , \(y = – 1.67x + c\)

\(x = 2.97\) (accept 2.96)     A1

coordinates of R are (2.97,0)     N3

[5 marks]

b.

Question

Consider the curve with equation \(f(x) = p{x^2} + qx\) , where p and q are constants. The point \({\text{A}}(1{\text{, }}3)\) lies on the curve. The tangent to the curve at A has gradient \(8\). Find the value of p and of q .

Answer/Explanation

Markscheme

substituting \(x = 1\) , \(y = 3\) into \(f(x)\)     (M1)

\(3 = p + q\)     A1

finding derivative     (M1)

\(f'(x) = 2px + q\)     A1

correct substitution, \(2p + q = 8\)     A1

\(p = 5\) , \(q = – 2\)     A1A1     N2N2

[7 marks]

Question

Let \(f(x) = \frac{{g(x)}}{{h(x)}}\), where \(g(2) = 18,{\text{ }}h(2) = 6,{\text{ }}g'(2) = 5\), and \(h'(2) = 2\). Find the equation of the normal to the graph of \(f\) at \(x = 2\).

Answer/Explanation

Markscheme

recognizing need to find \(f(2)\) or \(f'(2)\)     (R1)

\(f(2) = \frac{{18}}{6}\)   (seen anywhere)     (A1)

correct substitution into the quotient rule     (A1)

eg     \(\frac{{6(5) – 18(2)}}{{{6^2}}}\)

\(f'(2) =  – \frac{6}{{36}}\)     A1

gradient of normal is 6     (A1)

attempt to use the point and gradient to find equation of straight line     (M1)

eg     \(y – f(2) =  – \frac{1}{{f'(2)}}(x – 2)\)

correct equation in any form     A1     N4

eg     \(y – 3 = 6(x – 2),{\text{ }}y = 6x – 9\)

[7 marks]

Question

Let \(f(x) = 0.225{x^3} – 2.7x\), for \( – 3 \leqslant x \leqslant 3\). There is a local minimum point at A.

On the following grid,

Find the coordinates of A.

[2]
a.

(i)     sketch the graph of \(f\), clearly indicating the point A;

(ii)    sketch the tangent to the graph of \(f\) at A.

N16/5/MATME/SP2/ENG/TZ0/02.b

[5]
b.
Answer/Explanation

Markscheme

\({\text{A }}(2,{\text{ }}-3.6)\)     A1A1     N2

[2 marks]

a.

(i) (ii)     N16/5/MATME/SP2/ENG/TZ0/02.b/M     A1

A1A1A1     N4

A1     N1

Notes: (i) Award A1 for correct cubic shape with correct curvature.

Only if this A1 is awarded, award the following:

A1 for passing through their point A and the origin,

A1 for endpoints,

A1 for maximum.

(ii) Award A1 for horizontal line through their A.

[5 marks]

b.
Scroll to Top