IB DP Maths Topic 6.3 Optimization SL Paper 2

Question

A farmer wishes to create a rectangular enclosure, ABCD, of area 525 m2, as shown below.


The fencing used for side AB costs \(\$ 11\) per metre. The fencing for the other three sides costs \(\$ 3\) per metre. The farmer creates an enclosure so that the cost is a minimum. Find this minimum cost.

Answer/Explanation

Markscheme

METHOD 1

correct expression for second side, using area = 525     (A1)

e.g. let \({\rm{AB}} = x\) ,  \({\rm{AD}} = \frac{{525}}{x}\)

attempt to set up cost function using $3 for three sides and $11 for one side     (M1)

e.g. \(3({\rm{AD}} + {\rm{BC}} + {\rm{CD}}) + 11{\rm{AB}}\)

correct expression for cost     A2

e.g. \(\frac{{525}}{x} \times 3 + \frac{{525}}{x} \times 3 + 11x + 3x\) , \(\frac{{525}}{{{\rm{AB}}}} \times 3 + \frac{{525}}{{{\rm{AB}}}} \times 3 + 11{\rm{AB}} + 3{\rm{AB}}\) , \(\frac{{3150}}{x} + 14x\)

EITHER

sketch of cost function     (M1)

identifying minimum point     (A1)

e.g. marking point on graph, \(x = 15\)

minimum cost is 420 (dollars)     A1     N4

OR

correct derivative (may be seen in equation below)     (A1)

e.g. \(C'(x) = \frac{{ – 1575}}{{{x^2}}} + \frac{{ – 1575}}{{{x^2}}} + 14\)

setting their derivative equal to 0 (seen anywhere)     (M1)

e.g. \(\frac{{ – 3150}}{{{x^2}}} + 14 = 0\)

minimum cost is 420 (dollars)     A1     N4

METHOD 2

correct expression for second side, using area = 525     (A1)

e.g. let \({\rm{AD}} = x\) , \({\rm{AB}} = \frac{{525}}{x}\)

attempt to set up cost function using \(\$ 3\) for three sides and \(\$ 11\) for one side     (M1)

e.g. \(3({\rm{AD}} + {\rm{BC}} + {\rm{CD}}) + 11{\rm{AB}}\)

correct expression for cost     A2

e.g. \(3\left( {x + x + \frac{{525}}{x}} \right) + \frac{{525}}{x} \times 11\) , \(3\left( {{\rm{AD}} + {\rm{AD}} + \frac{{525}}{{{\rm{AD}}}}} \right) + \frac{{525}}{{{\rm{AD}}}} \times 11\) , \(6x + \frac{{7350}}{x}\)

EITHER

sketch of cost function     (M1)

identifying minimum point     (A1)

e.g. marking point on graph, \(x = 35\)

minimum cost is 420 (dollars)     A1     N4

OR

correct derivative (may be seen in equation below)     (A1)

e.g. \(C'(x) = 6 – \frac{{7350}}{{{x^2}}}\)

setting their derivative equal to 0 (seen anywhere)     (M1)

e.g. \(6 – \frac{{7350}}{{{x^2}}} = 0\)

minimum cost is 420 (dollars)     A1     N4

[7 marks]

Question

The diagram below shows a plan for a window in the shape of a trapezium.


Three sides of the window are \(2{\text{ m}}\) long. The angle between the sloping sides of the window and the base is \(\theta \) , where \(0 < \theta  < \frac{\pi }{2}\) .

Show that the area of the window is given by \(y = 4\sin \theta + 2\sin 2\theta \) .

[5]
a.

Zoe wants a window to have an area of \(5{\text{ }}{{\text{m}}^2}\). Find the two possible values of \(\theta \) .

[4]
b.

John wants two windows which have the same area A but different values of \(\theta \) .

Find all possible values for A .

[7]
c.
Answer/Explanation

Markscheme

evidence of finding height, h     (A1)

e.g. \(\sin \theta = \frac{h}{2}\) , \(2\sin \theta \)

evidence of finding base of triangle, b     (A1)

e.g. \(\cos \theta = \frac{b}{2}\) , \(2\cos \theta \)

attempt to substitute valid values into a formula for the area of the window     (M1)

e.g. two triangles plus rectangle, trapezium area formula

correct expression (must be in terms of \(\theta \) )     A1

e.g. \(2\left( {\frac{1}{2} \times 2\cos \theta \times 2\sin \theta } \right) + 2 \times 2\sin \theta \) , \(\frac{1}{2}(2\sin \theta )(2 + 2 + 4\cos \theta )\)

attempt to replace \(2\sin \theta \cos \theta \) by \(\sin 2\theta \)     M1

e.g. \(4\sin \theta + 2(2\sin \theta \cos \theta )\)

\(y = 4\sin \theta + 2\sin 2\theta \)     AG     N0

[5 marks]

a.

correct equation     A1

e.g. \(y = 5\) , \(4\sin \theta + 2\sin 2\theta = 5\)

evidence of attempt to solve     (M1)

e.g. a sketch, \(4\sin \theta + 2\sin \theta – 5 = 0\)

\(\theta = 0.856\) \(({49.0^ \circ })\) , \(\theta = 1.25\) \(({71.4^ \circ })\)     A1A1     N3

[4 marks]

b.

recognition that lower area value occurs at \(\theta = \frac{\pi }{2}\)     (M1)

finding value of area at \(\theta  = \frac{\pi }{2}\)     (M1)

e.g. \(4\sin \left( {\frac{\pi }{2}} \right) + 2\sin \left( {2 \times \frac{\pi }{2}} \right)\) , draw square

\(A = 4\)     (A1)

recognition that maximum value of y is needed     (M1)

\(A = 5.19615 \ldots \)     (A1)

\(4 < A < 5.20\) (accept \(4 < A < 5.19\) )     A2      N5

[7 marks]

c.

Question

Let \(f(x) = \frac{{100}}{{(1 + 50{{\rm{e}}^{ – 0.2x}})}}\) . Part of the graph of \(f\) is shown below.

Write down \(f(0)\) .

[1]
a.

Solve \(f(x) = 95\) .

[2]
b.

Find the range of \(f\) .

[3]
c.

Show that \(f'(x) = \frac{{1000{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) .

[5]
d.

Find the maximum rate of change of \(f\) .

[4]
e.
Answer/Explanation

Markscheme

\(f(0) = \frac{{100}}{{51}}\) (exact), \(1.96\)     A1     N1

[1 mark]

a.

setting up equation     (M1)

eg   \(95 = \frac{{100}}{{1 + 50{{\rm{e}}^{ – 0.2x}}}}\) , sketch of graph with horizontal line at \(y = 95\)

\(x = 34.3\)     A1     N2

[2 marks]

b.

upper bound of \(y\) is \(100\)     (A1)

lower bound of \(y\) is \(0\)     (A1)

range is \(0 < y < 100\)     A1     N3

[3 marks]

c.

METHOD 1

setting function ready to apply the chain rule     (M1)

eg   \(100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 1}}\) 

evidence of correct differentiation (must be substituted into chain rule)     (A1)(A1)

eg   \(u’ = – 100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}\) , \(v’ = (50{{\rm{e}}^{ – 0.2x}})( – 0.2)\) 

correct chain rule derivative     A1

eg   \(f'(x) = – 100{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}(50{{\rm{e}}^{ – 0.2x}})( – 0.2)\) 

correct working clearly leading to the required answer     A1

eg   \(f'(x) = 1000{{\rm{e}}^{ – 0.2x}}{(1 + 50{{\rm{e}}^{ – 0.2x}})^{ – 2}}\) 

\(f'(x) = \frac{{1000{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)     AG     N0

METHOD 2

attempt to apply the quotient rule (accept reversed numerator terms)     (M1)

eg   \(\frac{{vu’ – uv’}}{{{v^2}}}\) , \(\frac{{uv’ – vu’}}{{{v^2}}}\)

evidence of correct differentiation inside the quotient rule     (A1)(A1)

eg   \(f'(x) = \frac{{(1 + 50{{\rm{e}}^{ – 0.2x}})(0) – 100(50{{\rm{e}}^{ – 0.2x}} \times  – 0.2)}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) , \(\frac{{100( – 10){{\rm{e}}^{ – 0.2x}} – 0}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

any correct expression for derivative (\(0\) may not be explicitly seen)     (A1)

eg   \(\frac{{ – 100(50{{\rm{e}}^{ – 0.2x}} \times  – 0.2)}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

correct working clearly leading to the required answer     A1

eg   \(f'(x) = \frac{{0 – 100( – 10){{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\) , \(\frac{{ – 100( – 10){{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)

\(f'(x) = \frac{{{\rm{1000}}{{\rm{e}}^{ – 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}}}\)     AG     N0

[5 marks]

d.

METHOD 1

sketch of \(f'(x)\)     (A1)

eg

recognizing maximum on \(f'(x)\)     (M1)

eg dot on max of sketch

finding maximum on graph of \(f'(x)\)     A1

eg   (\(19.6\), \(5\)) , \(x = 19.560 \ldots \)

maximum rate of increase is \(5\)     A1 N2

METHOD 2

recognizing \(f”(x) = 0\)     (M1)

finding any correct expression for  \(f”(x) = 0\)     (A1)

eg   \(\frac{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^2}( – 200{{\rm{e}}^{ – 0.2x}}) – (1000{{\rm{e}}^{ – 0.2x}})(2(1 + 50{{\rm{e}}^{ – 0.2x}})( – 10{{\rm{e}}^{ – 0.2x}}))}}{{{{(1 + 50{{\rm{e}}^{ – 0.2x}})}^4}}}\)

finding \(x = 19.560 \ldots \)     A1

maximum rate of increase is \(5\)     A1     N2

[4 marks]

e.

Question

Let \(f(x) = \frac{{3x}}{{x – q}}\), where \(x \ne q\).

Write down the equations of the vertical and horizontal asymptotes of the graph of \(f\).

[2]
a.

The vertical and horizontal asymptotes to the graph of \(f\) intersect at the point \({\text{Q}}(1,3)\).

Find the value of \(q\).

[2]
b.

The vertical and horizontal asymptotes to the graph of \(f\) intersect at the point \({\text{Q}}(1,3)\).

The point \({\text{P}}(x,{\text{ }}y)\) lies on the graph of \(f\). Show that \({\text{PQ}} = \sqrt {{{(x – 1)}^2} + {{\left( {\frac{3}{{x – 1}}} \right)}^2}} \).

[4]
c.

The vertical and horizontal asymptotes to the graph of \(f\) intersect at the point \({\text{Q}}(1,3)\).

Hence find the coordinates of the points on the graph of \(f\) that are closest to \((1,3)\).

[6]
d.
Answer/Explanation

Markscheme

\(x = q,{\text{ }}y = 3\)   (must be equations)     A1A1     N2

[2 marks]

a.

recognizing connection between point of intersection and asymptote     (R1)

eg     \(x = 1\)

\(q = 1\)     A1     N2

[2 marks]

b.

correct substitution into distance formula     A1

eg     \(\sqrt {{{(x – 1)}^2} + {{(y – 3)}^2}} \)

attempt to substitute \(y = \frac{{3x}}{{x – 1}}\)     (M1)

eg     \(\sqrt {{{(x – 1)}^2} + {{\left( {\frac{{3x}}{{x – 1}} – 3} \right)}^2}} \)

correct simplification of \(\left( {\frac{{3x}}{{x – 1}} – 3} \right)\)     (A1)

eg     \(\frac{{3x – 3x(x – 1)}}{{x – 1}}\)

correct expression clearly leading to the required answer     A1

eg     \(\frac{{3x – 3x + 3}}{{x – 1}},{\text{ }}\sqrt {{{(x – 1)}^2} + {{\left( {\frac{{3x – 3x + 3}}{{x – 1}}} \right)}^2}} \)

\({\text{PQ}} = \sqrt {{{(x – 1)}^2} + {{\left( {\frac{3}{{x – 1}}} \right)}^2}} \)     AG     N0

[4 marks]

c.

recognizing that closest is when \({\text{PQ}}\) is a minimum     (R1)

eg     sketch of \({\text{PQ}}\), \(({\text{PQ}})'(x) = 0\)

\(x =  – 0.73205{\text{ }}x = 2.73205\)   (seen anywhere)     A1A1

attempt to find y-coordinates     (M1)

eg     \(f( – 0.73205)\)

\((-0.73205, 1.267949) , (2.73205, 4.73205)\)

\((-0.732, 1.27) , (2.73, 4.73) \)    A1A1     N4

[6 marks]

d.

Question

Let \(f(x) = \ln x\) and \(g(x) = 3 + \ln \left( {\frac{x}{2}} \right)\), for \(x > 0\).

The graph of \(g\) can be obtained from the graph of \(f\) by two transformations:

\[\begin{array}{*{20}{l}} {{\text{a horizontal stretch of scale factor }}q{\text{ followed by}}} \\ {{\text{a translation of }}\left( {\begin{array}{*{20}{c}} h \\ k \end{array}} \right).} \end{array}\]

Let \(h(x) = g(x) \times \cos (0.1x)\), for \(0 < x < 4\). The following diagram shows the graph of \(h\) and the line \(y = x\).

M17/5/MATME/SP2/ENG/TZ1/10.b.c

The graph of \(h\) intersects the graph of \({h^{ – 1}}\) at two points. These points have \(x\) coordinates 0.111 and 3.31 correct to three significant figures.

Write down the value of \(q\);

[1]
a.i.

Write down the value of \(h\);

[1]
a.ii.

Write down the value of \(k\).

[1]
a.iii.

Find \(\int_{0.111}^{3.31} {\left( {h(x) – x} \right){\text{d}}x} \).

[2]
b.i.

Hence, find the area of the region enclosed by the graphs of \(h\) and \({h^{ – 1}}\).

[3]
b.ii.

Let \(d\) be the vertical distance from a point on the graph of \(h\) to the line \(y = x\). There is a point \({\text{P}}(a,{\text{ }}b)\) on the graph of \(h\) where \(d\) is a maximum.

Find the coordinates of P, where \(0.111 < a < 3.31\).

[7]
c.
Answer/Explanation

Markscheme

\(q = 2\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.i.

\(h = 0\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.ii.

\(k = 3\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.iii.

2.72409

2.72     A2     N2

[2 marks]

b.i.

recognizing area between \(y = x\) and \(h\) equals 2.72     (M1)

eg\(\,\,\,\,\,\)M17/5/MATME/SP2/ENG/TZ1/10.b.ii/M

recognizing graphs of \(h\) and \({h^{ – 1}}\) are reflections of each other in \(y = x\)     (M1)

eg\(\,\,\,\,\,\)area between \(y = x\) and \(h\) equals between \(y = x\) and \({h^{ – 1}}\)

\(2 \times 2.72\int_{0.111}^{3.31} {\left( {x – {h^{ – 1}}(x)} \right){\text{d}}x = 2.72} \)

5.44819

5.45     A1     N3

[??? marks]

b.ii.

valid attempt to find \(d\)     (M1)

eg\(\,\,\,\,\,\)difference in \(y\)-coordinates, \(d = h(x) – x\)

correct expression for \(d\)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\ln \frac{1}{2}x + 3} \right)(\cos 0.1x) – x\)

valid approach to find when \(d\) is a maximum     (M1)

eg\(\,\,\,\,\,\)max on sketch of \(d\), attempt to solve \(d’ = 0\)

0.973679

\(x = 0.974\)     A2     N4 

substituting their \(x\) value into \(h(x)\)     (M1)

2.26938

\(y = 2.27\)     A1     N2

[7 marks]

c.
Scroll to Top