IB DP Maths Topic 6.5 Areas between curves SL Paper 1

Question

Let \(f(x) = {x^3}\). The following diagram shows part of the graph of f .


The point \({\rm{P}}(a,f(a))\) , where \(a > 0\) , lies on the graph of f . The tangent at P crosses the x-axis at the point \({\rm{Q}}\left( {\frac{2}{3},0} \right)\) . This tangent intersects the graph of f at the point R(−2, −8) .

 

The equation of the tangent at P is \(y = 3x – 2\) . Let T be the region enclosed by the graph of f , the tangent [PR] and the line \(x = k\) , between \(x = – 2\) and \(x = k\) where \( – 2 < k < 1\) . This is shown in the diagram below.


(i)     Show that the gradient of [PQ] is \(\frac{{{a^3}}}{{a – \frac{2}{3}}}\) .

(ii)    Find \(f'(a)\) .

(iii)   Hence show that \(a = 1\) .

[7]
a(i), (ii) and (iii).

Given that the area of T is \(2k + 4\) , show that k satisfies the equation \({k^4} – 6{k^2} + 8 = 0\) .

[9]
b.
Answer/Explanation

Markscheme

(i) substitute into gradient \( = \frac{{{y_1} – {y_2}}}{{{x_1} – {x_2}}}\)     (M1)

e.g. \(\frac{{f(a) – 0}}{{a – \frac{2}{3}}}\)

substituting \(f(a) = {a^3}\)

e.g. \(\frac{{{a^3} – 0}}{{a – \frac{2}{3}}}\)     A1

gradient \(\frac{{{a^3}}}{{a – \frac{2}{3}}}\)     AG     N0

(ii) correct answer     A1     N1

e.g. \(3{a^2}\) , \(f'(a) = 3\) , \(f'(a) = \frac{{{a^3}}}{{a – \frac{2}{3}}}\)

(iii) METHOD 1

evidence of approach     (M1)

e.g. \(f'(a) = {\rm{gradient}}\) , \(3{a^2} = \frac{{{a^3}}}{{a – \frac{2}{3}}}\)

simplify     A1

e.g. \(3{a^2}\left( {a – \frac{2}{3}} \right) = {a^3}\)

rearrange     A1

e.g. \(3{a^3} – 2{a^2} = {a^3}\)

evidence of solving     A1

e.g. \(2{a^3} – 2{a^2} = 2{a^2}(a – 1) = 0\)

\(a = 1\)     AG     N0

METHOD 2

gradient RQ \( = \frac{{ – 8}}{{ – 2 – \frac{2}{3}}}\)     A1

simplify     A1

e.g. \(\frac{{ – 8}}{{ – \frac{8}{3}}},3\)

evidence of approach     (M1)

e.g. \(f'(a) = {\rm{gradient}}\) , \(3{a^2} = \frac{{ – 8}}{{ – 2 – \frac{2}{3}}}\) , \(\frac{{{a^3}}}{{a – \frac{2}{3}}} = 3\)

simplify     A1

e.g. \(3{a^2} = 3\) , \({a^2} = 1\)

\(a = 1\)     AG     N0

[7 marks]

a(i), (ii) and (iii).

approach to find area of T involving subtraction and integrals    (M1)

e.g. \(\int {f – (3x – 2){\rm{d}}x} \) , \(\int_{ – 2}^k {(3x – 2) – \int_{ – 2}^k {{x^3}} } \) , \(\int {({x^3} – 3x + 2)} \)

correct integration with correct signs     A1A1A1

e.g. \(\frac{1}{4}{x^4} – \frac{3}{2}{x^2} + 2x\) , \(\frac{3}{2}{x^2} – 2x – \frac{1}{4}{x^4}\)

correct limits \( – 2\) and k (seen anywhere)     A1

e.g. \(\int_{ – 2}^k {({x^3} – 3x + 2){\rm{d}}x} \) , \(\left[ {\frac{1}{4}{x^4} – \frac{3}{2}{x^2} + 2x} \right]_{ – 2}^k\)

attempt to substitute k and \( – 2\)     (M1)

correct substitution into their integral if 2 or more terms     A1

e.g. \(\left( {\frac{1}{4}{k^4} – \frac{3}{2}{k^2} + 2k} \right) – (4 – 6 – 4)\)

setting their integral expression equal to \(2k + 4\) (seen anywhere)     (M1)

simplifying     A1

e.g. \(\frac{1}{4}{k^4} – \frac{3}{2}{k^2} + 2 = 0\)

\({k^4} – 6{k^2} + 8 = 0\)     AG     N0

[9 marks]

b.

Question

Let \(f(x) = \frac{{{{(\ln x)}^2}}}{2}\), for \(x > 0\).

Let \(g(x) = \frac{1}{x}\). The following diagram shows parts of the graphs of \(f’\) and g.

The graph of \(f’\) has an x-intercept at \(x = p\).

Show that \(f'(x) = \frac{{\ln x}}{x}\).

[2]
a.

There is a minimum on the graph of \(f\). Find the \(x\)-coordinate of this minimum.

[3]
b.

Write down the value of \(p\).

[2]
c.

The graph of \(g\) intersects the graph of \(f’\) when \(x = q\).

Find the value of \(q\).

[3]
d.

The graph of \(g\) intersects the graph of \(f’\) when \(x = q\).

Let \(R\) be the region enclosed by the graph of \(f’\), the graph of \(g\) and the line \(x = p\).

Show that the area of \(R\) is \(\frac{1}{2}\).

[5]
e.
Answer/Explanation

Markscheme

METHOD 1

correct use of chain rule     A1A1

eg     \(\frac{{2\ln x}}{2} \times \frac{1}{x},{\text{ }}\frac{{2\ln x}}{{2x}}\)

Note: Award A1 for \(\frac{{2\ln x}}{{2x}}\), A1 for \( \times \frac{1}{x}\).

\(f'(x) = \frac{{\ln x}}{x}\)     AG     N0

[2 marks]

METHOD 2

correct substitution into quotient rule, with derivatives seen     A1

eg     \(\frac{{2 \times 2\ln x \times \frac{1}{x} – 0 \times {{(\ln x)}^2}}}{4}\)

correct working     A1

eg     \(\frac{{4\ln x \times \frac{1}{x}}}{4}\)

\(f'(x) = \frac{{\ln x}}{x}\)     AG     N0

[2 marks]

a.

setting derivative \( = 0\)     (M1)

eg     \(f'(x) = 0,{\text{ }}\frac{{\ln x}}{x} = 0\)

correct working     (A1)

eg     \(\ln x = 0,{\text{ }}x = {{\text{e}}^0}\)

\(x = 1\)     A1     N2

[3 marks] 

b.

intercept when \(f'(x) = 0\)     (M1)

\(p = 1\)     A1     N2

[2 marks]

c.

equating functions     (M1)

eg     \(f’ = g,{\text{ }}\frac{{\ln x}}{x} = \frac{1}{x}\)

correct working     (A1)

eg     \(\ln x = 1\)

\(q = {\text{e   (accept }}x = {\text{e)}}\)     A1     N2

[3 marks]

d.

evidence of integrating and subtracting functions (in any order, seen anywhere)     (M1)

eg     \(\int_q^e {\left( {\frac{1}{x} – \frac{{\ln x}}{x}} \right){\text{d}}x{\text{, }}\int {f’ – g} } \)

correct integration \(\ln x – \frac{{{{(\ln x)}^2}}}{2}\)     A2

substituting limits into their integrated function and subtracting (in any order)     (M1)

eg     \((\ln {\text{e}} – \ln 1) – \left( {\frac{{{{(\ln {\text{e}})}^2}}}{2} – \frac{{{{(\ln 1)}^2}}}{2}} \right)\)

Note: Do not award M1 if the integrated function has only one term.

correct working     A1

eg     \((1 – 0) – \left( {\frac{1}{2} – 0} \right),{\text{ }}1 – \frac{1}{2}\)

\({\text{area}} = \frac{1}{2}\)     AG     N0

Notes: Candidates may work with two separate integrals, and only combine them at the end. Award marks in line with the markscheme.

[5 marks]

e.

Question

Let \(f(x) = {x^2} – x\), for \(x \in \mathbb{R}\). The following diagram shows part of the graph of \(f\).

N17/5/MATME/SP1/ENG/TZ0/08

The graph of \(f\) crosses the \(x\)-axis at the origin and at the point \({\text{P}}(1,{\text{ }}0)\).

The line L is the normal to the graph of f at P.

The line \(L\) intersects the graph of \(f\) at another point Q, as shown in the following diagram.

N17/5/MATME/SP1/ENG/TZ0/08.c.d

Show that \(f’(1) = 1\).

[3]
a.

Find the equation of \(L\) in the form \(y = ax + b\).

[3]
b.

Find the \(x\)-coordinate of Q.

[4]
c.

Find the area of the region enclosed by the graph of \(f\) and the line \(L\).

[6]
d.
Answer/Explanation

Markscheme

\(f’(x) = 2x – 1\)     A1A1

correct substitution     A1

eg\(\,\,\,\,\,\)\(2(1) – 1,{\text{ }}2 – 1\)

\(f’(1) = 1\)     AG     N0

[3 marks]

a.

correct approach to find the gradient of the normal     (A1)

eg\(\,\,\,\,\,\)\(\frac{{ – 1}}{{f'(1)}},{\text{ }}{m_1}{m_2} =  – 1,{\text{ slope}} =  – 1\)

attempt to substitute correct normal gradient and coordinates into equation of a line     (M1)

eg\(\,\,\,\,\,\)\(y – 0 =  – 1(x – 1),{\text{ }}0 =  – 1 + b,{\text{ }}b = 1,{\text{ }}L =  – x + 1\)

\(y =  – x + 1\)     A1     N2

[3 marks]

b.

equating expressions     (M1)

eg\(\,\,\,\,\,\)\(f(x) = L,{\text{ }} – x + 1 = {x^2} – x\)

correct working (must involve combining terms)     (A1)

eg\(\,\,\,\,\,\)\({x^2} – 1 = 0,{\text{ }}{x^2} = 1,{\text{ }}x = 1\)

\(x =  – 1\,\,\,\,\,\left( {{\text{accept }}Q( – 1,{\text{ }}2)} \right)\)     A2     N3

[4 marks]

c.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(\int {L – f,{\text{ }}\int_{ – 1}^1 {(1 – {x^2}){\text{d}}x} } \), splitting area into triangles and integrals

correct integration     (A1)(A1)

eg\(\,\,\,\,\,\)\(\left[ {x – \frac{{{x^3}}}{3}} \right]_{ – 1}^1,{\text{ }} – \frac{{{x^3}}}{3} – \frac{{{x^2}}}{2} + \frac{{{x^2}}}{2} + x\)

substituting their limits into their integrated function and subtracting (in any order)     (M1)

eg\(\,\,\,\,\,\)\(1 – \frac{1}{3} – \left( { – 1 – \frac{{ – 1}}{3}} \right)\)

Note:     Award M0 for substituting into original or differentiated function.

area \( = \frac{4}{3}\)     A2     N3

[6 marks]

d.
Scroll to Top