Home / IBDP Maths analysis and approaches Topic: AHL 1.13 :Modulus–argument (polar) form HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 1.13 :Modulus–argument (polar) form HL Paper 1

Question

Consider \(\phi =(a+bi)^{3}\), where \(a, b \in \mathbb{R}\).

(a)  In terms of and b,  find

(i)  the real part of \(\phi\);

(ii)  the imaginary part of \(\phi\).

(b) Hence, or otherwise, show that \((1+\sqrt{3i})^{3}=-8\).

The roots of the equation \(z^{3}=-8\) are u, v, and w, where \(u=1+\sqrt{3i}\) and \(v\in \mathbb{R}\).

(c)Write down v and w,  giving your answers in Cartesian form.

On an Argand diagram, u , v and w are represented by the points U , V and W respectively.

(d) Find the area of the triangle UVW .

Each of the points U , V and W is rotated counter-clockwise (anticlockwise) about 0 through an angle of \(\frac{\pi }{4}\) to form three new points U′ , V′ and W′ . These points represent the complex numbers u′ , v′ and w′ respectively.

(e) Find u′ , v′ and w′ , giving your answers in the form \(re^{i\theta }\) , where \(-\pi < \theta \leq \pi \).

(f)Given that u′ , v′ and w′ are the solutions of \(z^{3}=c+di\) , where \(c, d\in \mathbb{R}\) , find the value of c and the value of d .

It is given that u , v , w , u′ , v′ and w′ are all solutions of \(z^{n}=\alpha \) for some \(\alpha \in \mathbb{C}\) , where \(n\in \mathbb{N}\).

(g) Find the smallest positive value of n .

▶️Answer/Explanation

Ans:

(a) attempt to expand the brackets or attempt to find the modulus and argument of \(\phi\)

(b) attempt to substitute \(a=1\) and \(b=\sqrt{3}\) into their real or imaginary part found in (a) OR to expand the brackets OR to use polar form

(c) \(v=-2, w=1-\sqrt{3i}\)

(d) METHOD 1

       triangle UVW has height \(h=3\) and base \(b=2\sqrt{3}\)

       attempt to find area of triangle with their height and base

      \(area=\frac{1}{2}\times 2\sqrt{3}\times 3\)

      \(=3\sqrt{3}\) (square units)

     METHOD 2

     triangle UVW has sides of length \(\left ( \sqrt{3^{2}+\left ( \sqrt{3} \right )^{2}}= \right )\sqrt{12}\)

     attempt to find area of equilateral triangle with their side length

   

     METHOD 3

     triangle UVO has sides of length \(\left ( \sqrt{1^{2}+\left ( \sqrt{3} \right )^{2}}= \right )2\)

     attempt to find area of three isosceles triangles with their side length and angle \(\frac{2\pi }{3}\)

     \(area=3\left ( \frac{1}{2}(2)^{2}sin\frac{2\pi }{3} \right )\)

     \(=3\sqrt{3}\) (square units)

(e) attempt to express u, v or w in the form \(re^{i\theta }\) and multiply by \(e^{\frac{\pi }{4}i}\)

(f) EITHER

attempt to find one of (u’)3, (v’)3or (w’)3

     

OR

attempt to find product of their three roots u’, v’ and w’

THEN

(g) METHOD 1

attempt to write the arguments of u, v, w, u’, v’ and w’ over a common denominator OR to write the arguments in degrees

THEN

arguments of u, v, w, u’, v’, and w’ differ by \(\frac{3\pi }{12}\) and \(\frac{5\pi }{12}\) or \(45^{\circ }\) and \(75^{\circ }\)

so arguments of polygon vertices differ by \(\frac{\pi }{12}\) or \(15^{\circ }\) 

\(n=24\)

METHOD 2

Let \(z=r cis\theta \Rightarrow z^{n}=r^{n}cis(n\theta )=r^{n}cis(n\theta )\), where \(\theta\) is the argument of u, v, w, u’, v’ and w’.

recognition to find \(n\theta\) where \(n=6,12,18,…\) and \(\theta =-\frac{3\pi }{4}, -\frac{\pi }{3}, -\frac{\pi }{12}, \frac{\pi }{3}, \frac{7\pi }{12}, \pi \)

when \(n=6\Rightarrow (n\theta =)-\frac{9\pi }{2}, -2\pi , \frac{7\pi }{2}, 6\pi \)

when \(n=12\Rightarrow (n\theta =)-9\pi , -4\pi , -\pi , 4\pi ,7\pi ,12\pi \) (which is not a multiple of \(2\pi\))

\(n=24\)

Detailed Solution

(a) To find the real and imaginary parts of

(a+ib)3 (a + ib)^3

, we need to expand this expression

\((a+ib)^{3}\)=(a+ib)(a+ib)(a+ib) =\((a^{2}+iab+iab+i^{2}b^{2})\)(a+ib) = [(a^{2} −b^{2})+2iab](a+ib)\)
                         =\((a^{2}-b^{2})(a)+(a^{2}-b^{2})(ib)+(2iab)(a)+(2iab)(ib)\) = (a+ib)^{3}=(a^{3}-ab^{2})+(iba^{2}-ib^{3})+2a^{2}ib-2ab\) =(a^{3}-ab^{2}-2ab)+i(3a^{2}b-b^{3})
(1) Real  part = \((a^{3}-ab^{2})-2ab\)
(2) Imaginary part = \((iba^{2}-ib^{3})+2a^{2}ib\)

(b)  For

a=1 a = 1

,

b=3 b = \sqrt{3}

, we get 

(c) Given equation, \(z^{3}=-8\) therefore,
 
Therefore, \(v=-2, w=1-\sqrt{3i}\)
(d) Using the roots u,v,w as coordinates of vertices 
Let O be the centre of the triangle, triangle UVO has sides of length \(\left ( \sqrt{1^{2}+\left ( \sqrt{3} \right )^{2}}= \right )2\)
 to find area of three isosceles triangles with their side length and angle \(\frac{2\pi }{3}\)
 \(area=3\left ( \frac{1}{2}(2)^{2}sin\frac{2\pi }{3} \right )\)
\(=3\sqrt{3}\) (square units)
(e) 
Now we express u, v or w in the form \(re^{i\theta }\) and multiply by \(e^{\frac{\pi }{4}i}\)
(f) Firstly,  find product of their three roots u’, v’ and w’
Then further,
 
(g) 
We write the arguments of u, v, w, u’, v’ and w’ over a common denominator OR else the arguments in degrees
arguments of u, v, w, u’, v’, and w’ differ by \(\frac{3\pi }{12}\) and \(\frac{5\pi }{12}\) or \(45^{\circ }\) and \(75^{\circ }\)
so arguments of polygon vertices differ by \(\frac{\pi }{12}\) or \(15^{\circ }\) 
\(n=24\)

Question:

In the following Argand diagram, the points Z1 , O and Z2 are the vertices of triangle Z1OZ2 described anticlockwise.

The point Z1 represents the complex number z1 = r1e , where r1 > 0. The point Z2 represents the complex number z2 = r2e , where r2 > 0.

Angles α, θ are measured anticlockwise from the positive direction of the real axis such that 0 ≤ α, θ < 2π and 0 < α – θ < π.

(a) Show that z1z2 * = r1r2e i(α – θ) where z2* is the complex conjugate of z2 .

▶️Answer/Explanation

Ans:

Note: Accept working in modulus-argument form

(b) Given that Re (z1 z2*) = 0, show that Z1OZ2 is a right-angled triangle.
In parts (c), (d) and (e), consider the case where Z1OZ2 is an equilateral triangle.

▶️Answer/Explanation

Ans:

(c) (i) Express z1 in terms of z2 .

▶️Answer/Explanation

Ans:

Note: Accept working in either modulus-argument form to obtain \(z_{1} = z_{2}\left ( cos\frac{\pi }{3} + isin\frac{\pi }{3} \right )\) or in Cartesian form to obtain \(z_{1} = z_{2}\left ( \frac{1}{2} + \frac{\sqrt{3}}{2} \right )i\)

(ii) Hence show that z12 + z22 = z1 z2 .

Let z1 and z2 be the distinct roots of the equation z2 + az + b = 0 where z ∈ C and a , b ∈ R.

▶️Answer/Explanation

Ans:

(d) Use the result from part (c)(ii) to show that a2 – 3b = 0.

Consider the equation z2 + az + 12 = 0, where z ∈ C and a ∈ R.

▶️Answer/Explanation

Ans:

(e) Given that 0 < α – θ < π, deduce that only one equilateral triangle Z1OZ2 can be formed from the point O and the roots of this equation.

▶️Answer/Explanation

Ans:

so (for 0 <  α – θ < π), only one equilateral triangle can be formed from point O and the two roots of this equation

Question:

Consider the complex numbers z1 = 1 + bi and z2 = (1 – b2) – 2bi, where b ∈ R, b ≠ 0.

(a) Find an expression for z1z2 in terms of b.

▶️Answer/Explanation

Ans: z1z2  = (1 + bi) ((1-b2) – (2b)i)

= (1-b2 – 2i2b2) + i (-2b + b – b3)

= (1 + b2) + i (-b – b3)

Note: Award A1 for 1+ b2 and A1 for − bi – b3i .

(b) Hence, given that arg (z1 z2) = \(\frac{\pi }{4}\) , find the value of b.

▶️Answer/Explanation

Ans:  arg (z1z2) = arctan \(\left ( \frac{-b-b^{3}}{1 + b^{2}} \right )= \frac{\pi }{4}\)

EITHER

arctan (-b) = \(\frac{\pi }{4}\) (since 1+b2 ≠, 0 for b ∈ R)

OR

-b – b3 = 1 + b2  (or equivalent)

THEN

b =−1

Question

Consider \(w = 2\left( {{\text{cos}}\frac{\pi }{3} + {\text{i}}\,{\text{sin}}\frac{\pi }{3}} \right)\)

a. These four points form the vertices of a quadrilateral, Q.

i. Express w2 and w3 in modulus-argument form.[3]

▶️Answer/Explanation

Ans: \({w^2} = 4\text{cis}\left( {\frac{{2\pi }}{3}} \right){\text{;}}\,\,{w^3} = 8{\text{cis}}\left( \pi \right)\) (M1)A1A1

Note: Accept Euler form.

Note: M1 can be awarded for either both correct moduli or both correct arguments.

Note: Allow multiplication of correct Cartesian form for M1, final answers must be in modulus-argument form.

[3 marks]

ii. Sketch on an Argand diagram the points represented by w0 , w1 , w2 and w3.[2]
▶️Answer/Explanation

Ans:

A1A1

[2 marks]

b. Show that the area of the quadrilateral Q is \(\frac{{21\sqrt 3 }}{2}\).[3]
▶️Answer/Explanation

Ans:

use of area = \(\frac{1}{2}ab\,\,{\text{sin}}\,C\) M1

\(\frac{1}{2} \times 1 \times 2 \times {\text{sin}}\frac{\pi }{3} + \frac{1}{2} \times 2 \times 4 \times {\text{sin}}\frac{\pi }{3} + \frac{1}{2} \times 4 \times 8 \times {\text{sin}}\frac{\pi }{3}\) A1A1

Note: Award A1 for \(C = \frac{\pi }{3}\), A1 for correct moduli.

\( = \frac{{21\sqrt 3 }}{2}\) AG

Note: Other methods of splitting the area may receive full marks.

[3 marks]

Let \(z = 2\left( {{\text{cos}}\frac{\pi }{n} + {\text{i}}\,{\text{sin}}\frac{\pi }{n}} \right),\,\,n \in {\mathbb{Z}^ + }\). The points represented on an Argand diagram by \({z^0},\,\,{z^1},\,\,{z^2},\, \ldots \,,\,\,{z^n}\) form the vertices of a polygon \({P_n}\).

c. Show that the area of the polygon \({P_n}\) can be expressed in the form \(a\left( {{b^n} – 1} \right){\text{sin}}\frac{\pi }{n}\), where \(a,\,\,b\, \in \mathbb{R}\).[6]
▶️Answer/Explanation

Ans: 

\(\frac{1}{2} \times {2^0} \times {2^1} \times {\text{sin}}\frac{\pi }{n} + \frac{1}{2} \times {2^1} \times {2^2} \times {\text{sin}}\frac{\pi }{n} + \frac{1}{2} \times {2^2} \times {2^3} \times {\text{sin}}\frac{\pi }{n} + \, \ldots \, + \frac{1}{2} \times {2^{n – 1}} \times {2^n} \times {\text{sin}}\frac{\pi }{n}\) M1A1

Note: Award M1 for powers of 2, A1 for any correct expression including both the first and last term.

\( = {\text{sin}}\frac{\pi }{n} \times \left( {{2^0} + {2^2} + {2^4} + \, \ldots \, + {2^{n – 2}}} \right)\)

identifying a geometric series with common ratio 22(= 4) (M1)A1

\( = \frac{{1 – {2^{2n}}}}{{1 – 4}} \times {\text{sin}}\frac{\pi }{n}\) M1

Note: Award M1 for use of formula for sum of geometric series.

\( = \frac{1}{3}\left( {{4^n} – 1} \right){\text{sin}}\frac{\pi }{n}\) A1

[6 marks]

Scroll to Top