Home / AP Calculus AB and BC: Chapter 1 – Limits and Continuity : 1.2 – The Limit of a Function and One Sided Limits Study Notes

AP Calculus AB and BC: Chapter 1 – Limits and Continuity : 1.2 – The Limit of a Function and One Sided Limits Study Notes

Definition of Limit

The statement

\(\underset{x\rightarrow c}{lim}f(x)=L\)

means f approaches the limit L as x approaches c.

Which is read “the limit of f (x), as x approaches c, equals L .”

Basic Limits

1. If f is the constant function f (x) = k , then for any value of c,

\(\underset{x\rightarrow c}{lim}f(x)=\underset{x\rightarrow c}{lim}k=k\).

2. If f is the polynomial function \(f(x)=x^{n}\), then for any value of c,

\(\underset{x\rightarrow c}{lim}f(x)=\underset{x\rightarrow c}{lim}x^{n}=c^{n}\).

Finding Limits Graphically

Consider the graph of the function \(f\left ( x \right )=\frac{x^{3}+1}{x+1}\). The given function is defined for all real numbers x except x = -1. The graph of f is a parabola with the point (-1,3) removed as shown below. Even though f (-1) is not defined, we can make the value of f (x) as close to 3 as we want by choosing an x close enough to −1 .

Although f (x) is not defined when x = -1, the limit of f (x) as x approaches -1 is 3, because the definition of a limit says that we consider values of x that are close to c , but not equal to c .

One Sided Limits

The right-hand limit means that x approaches c from values greater than c.

This limit is denoted as

\(\underset{x\rightarrow c^{+}}{lim}f(x)=L\).

The left-hand limit means that x approaches c from values less than c.

This limit is denoted as

\(\underset{x\rightarrow c^{-}}{lim}f(x)=L\).

The Existence of a Limit

The limit of f (x) as x approaches c is L if and only if

\(\underset{x\rightarrow c^{+}}{lim}f(x)=L\) and \(\underset{x\rightarrow c^{-}}{lim}f(x)=L\)

Limits That Fail to Exists

Some limits that fail to exists are illustrated below.

The left limit and the right limit is different. \(\underset{x\rightarrow 0}{lim}\frac{\left | x \right |}{x}=1\), if x > 0 and \(\underset{x\rightarrow 0}{lim}\frac{\left | x \right |}{x}=-1\), if x < 0.

As approaches 0 from the right or the left, f (x) increases or decreases without bound.

The values of f (x) oscillate between -1 and 1 infinitely often as x approaches 0.

Example 1

  • Find the limit.

(a) \(\underset{x\rightarrow 2}{lim}\left ( 7 \right )\)                (b) \(\underset{x\rightarrow -1}{lim}\left ( x^{3}-2x \right )\)                (c) \(\underset{x\rightarrow 0}{lim}\frac{sin x}{x}\)

▶️Answer/Explanation

Solution

(a) \(\underset{x\rightarrow 2}{lim}\left ( 7 \right )=7\)                                                                                                         \(\underset{x\rightarrow c}{lim}k=k\)

(b) \(\underset{x\rightarrow -1}{lim}\left ( x^{3}-2x \right )=\left ( -1 \right )^{3}-2\left ( -1 \right )=1\)                                           \(\underset{x\rightarrow c}{lim}x^{n}=c^{n}\)

(c) The function f (x) is not defined when x = 0 . Find the Limit Graphically. Graph \(y=\frac{sinx}{x}\) using a graphing calculator. The limit of \(f\left ( x \right )=\frac{sinx}{x}\) as x approaches 0 is 1.

Example 2

  • The graph of the function f is shown in the figure below. Find the limit or value of the function at a given point.

(a) \(\underset{x\rightarrow 3^{-}}{lim}f\left ( x \right )\)                                           (b) \(\underset{x\rightarrow 3^{+}}{lim}f\left ( x \right )\)                                            (c) \(\underset{x\rightarrow 3}{lim}f\left ( x \right )\)

(d) \(\underset{x\rightarrow 6}{lim}f\left ( x \right )\)                                           (e) f (3)                                                               (f) f (6)

▶️Answer/Explanation

Solution

(a) \(\underset{x\rightarrow 3^{-}}{lim}f\left ( x \right )=0\)

(b) \(\underset{x\rightarrow 3^{+}}{lim}f\left ( x \right )=3\)

(c) \(\underset{x\rightarrow 3^{-}}{lim}f\left ( x \right )\) does not exists since \(\underset{x\rightarrow 3^{-}}{lim}f\left ( x \right )\neq \underset{x\rightarrow 3^{+}}{lim}f\left ( x \right )\).

(d) \(\underset{x\rightarrow 6}{lim}f\left ( x \right )=3\), because \(\underset{x\rightarrow 6^{-}}{lim}f\left ( x \right )=3= \underset{x\rightarrow 6^{+}}{lim}f\left ( x \right )\).

(e) \(f\left ( 3 \right )=0\)

(f)  \(f\left ( 6 \right )=1\)

Example 3 

  • Find \(\underset{x\rightarrow 0}{lim}lnx\), if it exists.
▶️Answer/Explanation

Solution

As x approaches to 0, ln x decreases without bound. Since the value of f (x) does not approach a number, \(\underset{x\rightarrow 0}{lim}lnx\) does not exists.

Exercises – The Limit of a Function and One Sided Limits
Multiple Choice Questions

Question

1. \(\underset{x\rightarrow \frac{\pi }{6}}{lim}sec^{2}x=\)

(A) \(\frac{3}{4}\)                (B) \(\frac{\sqrt{3}}{2}\)                (C)\(\frac{4}{3}\)                (D)\(\frac{2\sqrt{3}}{3}\)

▶️Answer/Explanation

Ans:

1. C

Question

  • 2. If \(f\left ( x \right )=\left\{\begin{matrix}x^{2}+3, & x\neq 1\\1, & x= 1\end{matrix}\right.,\) then \(\underset{x\rightarrow 1}{lim}f\left ( x \right )=\)

(A) 1                (B) 2               (C) 3               (D) 4

▶️Answer/Explanation

Ans:

2. D

Question

  • \(\underset{x\rightarrow 1}{lim}\frac{\left | x-1 \right |}{\left | 1-x \right |}=\)

(A) −2                (B) −1                (C) 1               (D) nonexistent

▶️Answer/Explanation

Ans:

3. D

Question

  • 4. Let f be a function given by \(f\left ( x \right )=\left\{\begin{matrix}3-x^{2}, & if & x< 0\\2-x, & if & 0\leq x< 2.\\\sqrt{x-2}, & if & x> 2\end{matrix}\right.\)

     Which of the following statements are true about f ?

     I. \(\underset{x\rightarrow 0}{lim}f\left ( x \right )=2\)

     II. \(\underset{x\rightarrow 2}{lim}f\left ( x \right )=0\)

     III. \(\underset{x\rightarrow 1}{lim}f\left ( x \right )=\underset{x\rightarrow 6}{lim}f\left ( x \right )\)

(A) I only                (B) II only                (C) II and III only                (D) I , II, and III

▶️Answer/Explanation

Ans:

4. B

Free Response Questions

Questions 5-11 refer to the following graph.

The figure above shows the graph of y = f (x) on the closed interval [−4,9] .

Question

  • Find \(\underset{x\rightarrow -1}{lim}cos\left ( f\left ( x \right ) \right )\).
▶️Answer/Explanation

Ans:

5. 1

Question

  • Find \(\underset{x\rightarrow 2^{-}}{lim}f\left ( x \right )\).
▶️Answer/Explanation

Ans:

6. 2

Question

  •  Find \(\underset{x\rightarrow 2^{+}}{lim}f\left ( x \right )\).
▶️Answer/Explanation

Ans:

7. 4

Question

  •  Find \(\underset{x\rightarrow 2}{lim}f\left ( x \right )\).
▶️Answer/Explanation

Ans:

8. DNE

Question

  • Find f (2) .
▶️Answer/Explanation

Ans:

9. 3

Question

  •  Find \(\underset{x\rightarrow 5^{-}}{lim}\) arctan (f(x)).
▶️Answer/Explanation

Ans:

10. \(\frac{\pi }{4}\)

Question

  • Find \(\underset{x\rightarrow 5^{+}}{lim}\left [ x f\left ( x \right ) \right ]\).
▶️Answer/Explanation

Ans:

11. 10

Scroll to Top