Home / IB DP Math AI Topic : AHL 1.10 Simplifying expressions: IB Style Questions HL Paper 1

IB DP Math AI Topic : AHL 1.10 Simplifying expressions: IB Style Questions HL Paper 1

Question

Consider the function f defined by f (x) = ln (x2 – 16) for x > 4 .
The following diagram shows part of the graph of f which crosses the x-axis at point A, with
coordinates ( a , 0 ). The line L is the tangent to the graph of f at the point B.

(a) Find the exact value of a . [3]

(b) Given that the gradient of L is \(\frac{1}{3}\) , find the x-coordinate of B. [6]

▶️Answer/Explanation

Ans:

(a) When f(x)=0, we have
ln(x2−16)=0

x2−16=1

x=±√17
However, since x>4, we have x=√17
(b) Differentiating f(x) with respect to x, we have f′(x)= \(\frac{2x}{x^2-16}\)
At B, f′(x)=\(\frac{1}{3}\) , i.e., we have
x2−16=6x

x2−6x−16=0

(x+2)(x−8)=0.
Thus, x=−2 (reject) or x=8.

Question

Let \(\{ {u_n}\} ,{\text{ }}n \in {\mathbb{Z}^ + }\), be an arithmetic sequence with first term equal to \(a\) and common difference of \(d\), where \(d \ne 0\). Let another sequence \(\{ {v_n}\} ,{\text{ }}n \in {\mathbb{Z}^ + }\), be defined by \({v_n} = {2^{{u_n}}}\).

a.(i)     Show that \(\frac{{{v_{n + 1}}}}{{{v_n}}}\) is a constant.

(ii)     Write down the first term of the sequence \(\{ {v_n}\} \).

(iii)     Write down a formula for \({v_n}\) in terms of \(a\), \(d\) and \(n\).[4]

b.Let \({S_n}\) be the sum of the first \(n\) terms of the sequence \(\{ {v_n}\} \).

(i)     Find \({S_n}\), in terms of \(a\), \(d\) and \(n\).

(ii)     Find the values of \(d\) for which \(\sum\limits_{i = 1}^\infty  {{v_i}} \) exists.

You are now told that \(\sum\limits_{i = 1}^\infty  {{v_i}} \) does exist and is denoted by \({S_\infty }\).

(iii)     Write down \({S_\infty }\) in terms of \(a\) and \(d\) .

(iv)     Given that \({S_\infty } = {2^{a + 1}}\) find the value of \(d\) .[8]

c.Let \(\{ {w_n}\} ,{\text{ }}n \in {\mathbb{Z}^ + }\), be a geometric sequence with first term equal to \(p\) and common ratio \(q\), where \(p\) and \(q\) are both greater than zero. Let another sequence \(\{ {z_n}\} \) be defined by \({z_n} = \ln {w_n}\).

Find \(\sum\limits_{i = 1}^n {{z_i}} \) giving your answer in the form \(\ln k\) with \(k\) in terms of \(n\), \(p\) and \(q\).[6]

 
▶️Answer/Explanation

Markscheme

(i)     METHOD 1

\(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{{2^{{u_{n + 1}}}}}}{{{2^{{u_n}}}}}\)     M1

\( = {2^{{u_{n + 1}} – {u_n}}} = {2^d}\)     A1

METHOD 2

\(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{{2^{a + nd}}}}{{{2^{a + (n – 1)d}}}}\)     M1

\( = {2^d}\)     A1

(ii)     \( = {2^a}\)     A1

Note:     Accept \( = {2^{{u_1}}}\).

(iii)     EITHER

\({v_n}\) is a GP with first term \({2^a}\) and common ratio \({2^d}\)

\({v_n} = {2^a}{({2^d})^{(n – 1)}}\)

OR

\({u_n} = a + (n – 1)d\) as it is an AP

THEN

\({v_n} = {2^a}^{ + (n – 1)d}\)     A1

[4 marks]

a.

(i)     \({S_n} = \frac{{{2^a}\left( {{{({2^d})}^n} – 1} \right)}}{{{2^d} – 1}} = \frac{{{2^a}({2^{dn}} – 1)}}{{{2^d} – 1}}\)     M1A1

Note:     Accept either expression.

(ii)     for sum to infinity to exist need \( – 1 < {2^d} < 1\)     R1

\( \Rightarrow \log {2^d} < 0 \Rightarrow d\log 2 < 0 \Rightarrow d < 0\)     (M1)A1

Note:     Also allow graph of \({2^d}\).

(iii)     \({S_\infty } = \frac{{{2^a}}}{{1 – {2^d}}}\)     A1

(iv)     \(\frac{{{2^a}}}{{1 – {2^d}}} = {2^{a + 1}} \Rightarrow \frac{1}{{1 – {2^d}}} = 2\)     M1

\( \Rightarrow 1 = 2 – {2^{d + 1}} \Rightarrow {2^{d + 1}} = 1\)

\( \Rightarrow d =  – 1\)     A1

[8 marks]

b.

METHOD 1

\({w_n} = p{q^{n – 1}},{\text{ }}{z_n} = \ln p{q^{n – 1}}\)     (A1)

\({z_n} = \ln p + (n – 1)\ln q\)     M1A1

\({z_{n + 1}} – {z_n} = (\ln p + n\ln q) – (\ln p + (n – 1)\ln q) = \ln q\)

which is a constant so this is an AP

(with first term \(\ln p\) and common difference \(\ln q\))

\(\sum\limits_{i = 1}^n {{z_i} = \frac{n}{2}\left( {2\ln p + (n – 1)\ln q} \right)} \)     M1

\( = n\left( {\ln p + \ln {q^{\left( {\frac{{n – 1}}{2}} \right)}}} \right) = n\ln \left( {p{q^{\left( {\frac{{n – 1}}{2}} \right)}}} \right)\)     (M1)

\( = \ln \left( {{p^n}{q^{\frac{{n(n – 1)}}{2}}}} \right)\)     A1

METHOD 2

\(\sum\limits_{i = 1}^n {{z_i} = \ln p + \ln pq + \ln p{q^2} +  \ldots  + \ln p{q^{n – 1}}} \)     (M1)A1

\( = \ln \left( {{p^n}{q^{\left( {1 + 2 + 3 +  \ldots  + (n – 1)} \right)}}} \right)\)     (M1)A1

\( = \ln \left( {{p^n}{q^{\frac{{n(n – 1)}}{2}}}} \right)\)     (M1)A1

[6 marks]

Total [18 marks]

Question

Find integer values of \(m\) and \(n\) for which

\[m – n{\log _3}2 = 10{\log _9}6\]

▶️Answer/Explanation

Markscheme

METHOD 1

\(m – n{\log _3}2 = 10{\log _9}6\)

\(m – n{\log _3}2 = 5{\log _3}6\) M1

\(m = {\log _3}\left( {{6^5}{2^n}} \right)\) (M1)

\({3^m}{2^{ – n}} = {6^5} = {3^5} \times {2^5}\) (M1)

\(m = 5,{\text{ }}n = – 5\) A1

Note: First M1 is for any correct change of base, second M1 for writing as a single logarithm, third M1 is for writing 6 as \(2 \times 3\).

METHOD 2

\(m – n{\log _3}2 = 10{\log _9}6\)

\(m – n{\log _3}2 = 5{\log _3}6\) M1

\(m – n{\log _3}2 = 5{\log _3}3 + 5{\log _3}2\) (M1)

\(m – n{\log _3}2 = 5 + 5{\log _3}2\) (M1)

\(m = 5,{\text{ }}n = – 5\) A1

Note: First M1 is for any correct change of base, second M1 for writing 6 as \(2 \times 3\) and third M1 is for forming an expression without \({\log _3}3\).

[4 marks]

Question

Solve the equation \({4^x} + {2^{x + 2}} = 3\).

▶️Answer/Explanation

Markscheme

attempt to form a quadratic in \({2^x}\) M1

\({({2^x})^2} + 4 \bullet {2^x} – 3 = 0\) A1

\({2^x} = \frac{{ – 4 \pm \sqrt {16 + 12} }}{2}{\text{ }}\left( { = – 2 \pm \sqrt 7 } \right)\) M1

\({2^x} = – 2 + \sqrt 7 {\text{ }}\left( {{\text{as }} – 2 – \sqrt 7 < 0} \right)\) R1

\(x = {\log _2}\left( { – 2 + \sqrt 7 } \right){\text{ }}\left( {x = \frac{{\ln \left( { – 2 + \sqrt 7 } \right)}}{{\ln 2}}} \right)\) A1

Note: Award R0 A1 if final answer is \(x = {\log _2}\left( { – 2 + \sqrt 7 } \right)\).

[5 marks]

Scroll to Top