Question
A national park contains three mountains whose summits are at points A, B and C.
According to a coordinate system, the position of A is (0, 0, 2.8) and the position of B is
(7.2, 5.1, 2.4). All the values are in kilometres.
(a) (i) Find the vector $\overrightarrow{AB}$.
(ii) Hence find AB, the distance between A and B.
The vector $\overrightarrow{AC}$ is parallel to the vector $\begin{pmatrix}
1.1 \\
8.4 \\
0.2
\end{pmatrix}$
(b) Find the angle between $\begin{pmatrix}
1.1 \\
8.4 \\
0.2
\end{pmatrix}$ and $\overrightarrow{AB}$.
The angle between $\overrightarrow{BA}$ and $\overrightarrow{BC}$ is 55.2°.
(c) Use the sine rule to find AC.
▶️Answer/Explanation
Detail Solution:
Let’s tackle this problem step by step, diving into the geometry of these mountain summits with enthusiasm. We’re working in a 3D coordinate system with distances in kilometers, so we’ll use vectors, dot products, and the sine rule to solve each part.
Part(a) (i) Find the vector \(\overrightarrow{AB}\):
The position of point \( A \) is \( (0, 0, 2.8) \) and point \( B \) is \( (7.2, 5.1, 2.4) \). The vector \(\overrightarrow{AB}\) is found by subtracting the coordinates of \( A \) from \( B \):
\[ \overrightarrow{AB} = B – A = (7.2 – 0, 5.1 – 0, 2.4 – 2.8) = (7.2, 5.1, -0.4) \]
So,
\[ \overrightarrow{AB} = \begin{pmatrix} 7.2 \\ 5.1 \\ -0.4 \end{pmatrix} \]
Part(a) (ii) Hence find \( AB \), the distance between \( A \) and \( B \):
The distance \( AB \) is the magnitude of \(\overrightarrow{AB}\). For a vector \( (x, y, z) \), the magnitude is:
\[ |\overrightarrow{AB}| = \sqrt{x^2 + y^2 + z^2} \]
Substitute the components:
\[ |\overrightarrow{AB}| = \sqrt{(7.2)^2 + (5.1)^2 + (-0.4)^2} = \sqrt{51.84 + 26.01 + 0.16} = \sqrt{78.01} \]
Calculate:
\[ \sqrt{78.01} \approx 8.832 \]
So, the distance \( AB \approx 8.83 \) km (rounded to 2 decimal places).
Part(b) Find the angle between \(\begin{pmatrix} 1.1 \\ 8.4 \\ 0.2 \end{pmatrix}\) and \(\overrightarrow{AB}\):
Let’s call the given vector \(\overrightarrow{v} = \begin{pmatrix} 1.1 \\ 8.4 \\ 0.2 \end{pmatrix}\), which is parallel to \(\overrightarrow{AC}\). We need the angle \(\theta\) between \(\overrightarrow{v}\) and \(\overrightarrow{AB} = \begin{pmatrix} 7.2 \\ 5.1 \\ -0.4 \end{pmatrix}\). The cosine of the angle between two vectors is given by:
\[ \cos\theta = \frac{\overrightarrow{v} \cdot \overrightarrow{AB}}{|\overrightarrow{v}| |\overrightarrow{AB}|} \]
Dot product \(\overrightarrow{v} \cdot \overrightarrow{AB}\):
\[ \overrightarrow{v} \cdot \overrightarrow{AB} = (1.1 \times 7.2) + (8.4 \times 5.1) + (0.2 \times -0.4) = 7.92 + 42.84 – 0.08 = 50.68 \]
Magnitude of \(\overrightarrow{v}\):
\[ |\overrightarrow{v}| = \sqrt{(1.1)^2 + (8.4)^2 + (0.2)^2} = \sqrt{1.21 + 70.56 + 0.04} = \sqrt{71.81} \approx 8.471 \]
Magnitude of \(\overrightarrow{AB}\):
From (a)(ii), \( |\overrightarrow{AB}| \approx 8.832 \).
Cosine of the angle:
\[ \cos\theta = \frac{50.68}{8.471 \times 8.832} = \frac{50.68}{74.814} \approx 0.6773 \]
Angle \(\theta\):
\[ \theta = \cos^{-1}(0.6773) \approx 47.36^\circ \] (using a calculator, rounded to 2 decimal places).
So, the angle is approximately \( 47.36^\circ \).
Part(c) Use the sine rule to find \( AC \):
We’re given the angle between \(\overrightarrow{BA}\) and \(\overrightarrow{BC}\) as \( 55.2^\circ \). In triangle \( ABC \), this is the angle at \( B \) (since \(\overrightarrow{BA}\) goes from \( B \) to \( A \), and \(\overrightarrow{BC}\) goes from \( B \) to \( C \), the angle between them is \(\angle ABC\)). We need \( AC \), opposite \(\angle AB\).
Vectors and directions:
\(\overrightarrow{BA} = -\overrightarrow{AB} = \begin{pmatrix} -7.2 \\ -5.1 \\ 0.4 \end{pmatrix}\)
\(\overrightarrow{BC} = \overrightarrow{C} – \overrightarrow{B}\), but we don’t have \( C \)’s coordinates yet.
\(\overrightarrow{AC} = \overrightarrow{C} – \overrightarrow{A}\) is parallel to \(\overrightarrow{v} = \begin{pmatrix} 1.1 \\ 8.4 \\ 0.2 \end{pmatrix}\).
Triangle setup:
Side \( AB = 8.83 \) km (from (a)(ii)), opposite \(\angle AC\).
Side \( AC \) is opposite \(\angle AB\), which is the angle between \(\overrightarrow{BA}\) and \(\overrightarrow{BC}\), given as \( 55.2^\circ \).
We need \(\angle BAC\) (angle at \( A \)) between \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\). Since \(\overrightarrow{AC} \parallel \overrightarrow{v}\), this is the angle from (b): \( 47.36^\circ \).
Sine rule in \(\triangle ABC\):
\[ \frac{AC}{\sin(\angle AB)} = \frac{AB}{\sin(\angle AC)} \]
Here, \(\angle AB = 55.2^\circ\), \( AB = 8.83 \), and \(\angle AC\) is the angle at \( C \). Sum of angles in a triangle is \( 180^\circ \):
\[ \angle AC = 180^\circ – 47.36^\circ – 55.2^\circ = 77.44^\circ \]
Apply sine rule:
\[ \frac{AC}{\sin 55.2^\circ} = \frac{8.83}{\sin 77.44^\circ} \]
\[ AC = 8.83 \times \frac{\sin 55.2^\circ}{\sin 77.44^\circ} \]
Using approximate values:
\(\sin 55.2^\circ \approx 0.8192\)
\(\sin 77.44^\circ \approx 0.9744\)
\[ AC = 8.83 \times \frac{0.8192}{0.9744} \approx 8.83 \times 0.8407 \approx 7.423 \]
So, \( AC \approx 7.42 \) km (rounded to 2 decimal places).
————Markscheme—————–
(a) (i) \begin{pmatrix}
7.2 \\
5.1 \\
2.4
\end{pmatrix} – \begin{pmatrix}
0 \\
0 \\
2.8
\end{pmatrix} = \begin{pmatrix}
7.2 \\
5.1 \\
-0.4
\end{pmatrix}
(ii) $$|\overrightarrow{AB}| = \sqrt{7.2^2 + 5.1^2 + (-0.4)^2} = 8.83 (km) (8.83232…)$$
(b) magnitude of $\begin{pmatrix}
1.1 \\
8.4 \\
0.2
\end{pmatrix}$ is $\sqrt{1.1^2 + 8.4^2 + 0.2^2} = 8.48 (8.47407…)$
EITHER
$\begin{pmatrix}
1.1 \\
8.4 \\
0.2
\end{pmatrix} \cdot \begin{pmatrix}
7.2 \\
5.1 \\
-0.4
\end{pmatrix} = 1.1 \times 7.2 + 8.4 \times 5.1 + 0.2 \times (-0.4) = 50.68$
$angle = arccos(\frac{50.68}{8.83232…\times8.47407…})$
OR
Attempt to find
$\begin{pmatrix}
1.1 \\
8.4 \\
0.2
\end{pmatrix} \times \begin{pmatrix}
7.2 \\
5.1 \\
-0.4
\end{pmatrix}$
$\begin{pmatrix}
1.1 \\
8.4 \\
0.2
\end{pmatrix} \times \begin{pmatrix}
7.2 \\
5.1 \\
-0.4
\end{pmatrix} = \sqrt{4.38^2 + 1.88^2 + 54.87^2} (= 55.0766…)$
$angle = arcsin(\frac{55.0766…}{8.83232…\times8.47407…})$
THEN
47.4° (47.3805…) OR 0.827 (0.826947…)
(c) using sum of angles in a triangle equals 180
$\hat{ACB} = 180 – 47.3805 – 55.2 = 77.4194…°$
$\frac{AC}{\sin(55.2)} = \frac{8.83232…}{\sin(77.4194…)}$
7.43 (km) (7.43107…)
Question
The points P(−1, 2, − 3), Q(−2, 1, 0), R(0, 5, 1) and S form a parallelogram, where S is diagonally opposite Q.
a.Find the coordinates of S.[2]
b.The vector product \(\overrightarrow {{\text{PQ}}} \times \overrightarrow {{\text{PS}}} = \left( {\begin{array}{*{20}{c}}
{ – 13} \\
7 \\
m
\end{array}} \right)\). Find the value of m .[2]
c.Hence calculate the area of parallelogram PQRS.[2]
d.Find the Cartesian equation of the plane, \({\prod _1}\) , containing the parallelogram PQRS.[3]
f.Hence find the point on the plane that is closest to the origin.[3]
g.A second plane, \({\prod _2}\) , has equation x − 2y + z = 3. Calculate the angle between the two planes.[4]
▶️Answer/Explanation
Markscheme
\(\overrightarrow {{\text{PQ}}} = \left( {\begin{array}{*{20}{c}}
{ – 1} \\
{ – 1} \\
3
\end{array}} \right)\) , \(\overrightarrow {{\text{SR}}} = \left( {\begin{array}{*{20}{c}}
{0 – x} \\
{5 – y} \\
{1 – z}
\end{array}} \right)\) (M1)
point S = (1, 6, −2) A1
[2 marks]
\(\overrightarrow {{\text{PQ}}} = \left( {\begin{array}{*{20}{c}}
{ – 1} \\
{ – 1} \\
3
\end{array}} \right)\)\(\overrightarrow {{\text{PS}}} = \left( {\begin{array}{*{20}{c}}
2 \\
4 \\
1
\end{array}} \right)\) A1
\(\overrightarrow {{\text{PQ}}} \times \overrightarrow {{\text{PS}}} = \left( {\begin{array}{*{20}{c}}
{ – 13} \\
7 \\
{ – 2}
\end{array}} \right)\)
m = −2 A1
[2 marks]
area of parallelogram PQRS \( = \left| {\overrightarrow {{\text{PQ}}} \times \overrightarrow {{\text{PS}}} } \right| = \sqrt {{{( – 13)}^2} + {7^2} + {{( – 2)}^2}} \) M1
\( = \sqrt {222} = 14.9\) A1
[2 marks]
equation of plane is −13x + 7y − 2z = d M1A1
substituting any of the points given gives d = 33
−13x + 7y − 2z = 33 A1
[3 marks]
equation of line is \(\boldsymbol{r} = \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
0
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}
{ – 13} \\
7 \\
{ – 2}
\end{array}} \right)\) A1
Note: To get the A1 must have \(\boldsymbol{r} =\) or equivalent.
[1 mark]
\(169\lambda + 49\lambda + 4\lambda = 33\) M1
\(\lambda = \frac{{33}}{{222}}{\text{ }}( = 0.149…)\) A1
closest point is \(\left( { – \frac{{143}}{{74}},\frac{{77}}{{74}}, – \frac{{11}}{{37}}} \right){\text{ }}\left( { = ( – 1.93,{\text{ 1.04, – 0.297)}}} \right)\) A1
[3 marks]
angle between planes is the same as the angle between the normals (R1)
\(\cos \theta = \frac{{ – 13 \times 1 + 7 \times – 2 – 2 \times 1}}{{\sqrt {222} \times \sqrt 6 }}\) M1A1
\(\theta = 143^\circ \) (accept \(\theta = 37.4^\circ \) or 2.49 radians or 0.652 radians) A1
[4 marks]
Question
Two submarines A and B have their routes planned so that their positions at time t hours, 0 ≤ t < 20 , would be defined by the position vectors rA
\(\left( \begin{gathered}
\,2 \hfill \\
\,4 \hfill \\
– 1 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
– 1 \hfill \\
\,1 \hfill \\
– 0.15 \hfill \\
\end{gathered} \right)\)
and rB \( = \left( \begin{gathered}
\,0 \hfill \\
\,3.2 \hfill \\
– 2 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
– 0.5 \hfill \\
\,1.2 \hfill \\
\,0.1 \hfill \\
\end{gathered} \right)\)
relative to a fixed point on the surface of the ocean (all lengths are in kilometres).
To avoid the collision submarine B adjusts its velocity so that its position vector is now given by
rB \( = \left( \begin{gathered}
\,0 \hfill \\
\,3.2 \hfill \\
– 2 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
– 0.45 \hfill \\
\,1.08 \hfill \\
\,0.09 \hfill \\
\end{gathered} \right)\).
a.Show that the two submarines would collide at a point P and write down the coordinates of P.[4]
b.i.Show that submarine B travels in the same direction as originally planned.[1]
b.ii.Find the value of t when submarine B passes through P.[2]
c.i.Find an expression for the distance between the two submarines in terms of t.[5]
c.ii.Find the value of t when the two submarines are closest together.[2]
c.iii.Find the distance between the two submarines at this time.[1]
▶️Answer/Explanation
Markscheme
rA = rB (M1)
2 − t = − 0.5t ⇒ t = 4 A1
checking t = 4 satisfies 4 + t = 3.2 + 1.2t and − 1 − 0.15t = − 2 + 0.1t R1
P(−2, 8, −1.6) A1
Note: Do not award final A1 if answer given as column vector.
[4 marks]
\(0.9 \times \left( \begin{gathered}
– 0.5 \hfill \\
\,1.2 \hfill \\
\,0.1 \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
– 0.45 \hfill \\
\,1.08 \hfill \\
\,0.09 \hfill \\
\end{gathered} \right)\) A1
Note: Accept use of cross product equalling zero.
hence in the same direction AG
[1 mark]
\(\left( \begin{gathered}
\, – 0.45t \hfill \\
3.2 + 1.08t \hfill \\
– 2 + 0.09t \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
– 2 \hfill \\
\,8 \hfill \\
– 1.6 \hfill \\
\end{gathered} \right)\) M1
Note: The M1 can be awarded for any one of the resultant equations.
\( \Rightarrow t = \frac{{40}}{9} = 4.44 \ldots \) A1
[2 marks]
rA − rB = \(\left( \begin{gathered}
\,2 – t \hfill \\
\,4 + t \hfill \\
– 1 – 0.15t \hfill \\
\end{gathered} \right) – \left( \begin{gathered}
\, – 0.45t \hfill \\
3.2 + 1.08t \hfill \\
– 2 + 0.09t \hfill \\
\end{gathered} \right)\) (M1)(A1)
\( = \left( \begin{gathered}
\,2 – 0.55t \hfill \\
\,0.8 – 0.08t \hfill \\
1 – 0.24t \hfill \\
\end{gathered} \right)\) (A1)
Note: Accept rA − rB.
distance \(D = \sqrt {{{\left( {2 – 0.55t} \right)}^2} + {{\left( {0.8 – 0.08t} \right)}^2} + {{\left( {1 – 0.24t} \right)}^2}} \) M1A1
\(\left( { = \sqrt {8.64 – 2.688t + 0.317{t^2}} } \right)\)
[5 marks]
minimum when \(\frac{{{\text{d}}D}}{{{\text{d}}t}} = 0\) (M1)
t = 3.83 A1
[2 marks]
0.511 (km) A1
[1 mark]
Question
OABCDE is a regular hexagon and a , b denote respectively the position vectors of A, B with respect to O.
a.Show that OC = 2AB .[2]
b.Find the position vectors of C, D and E in terms of a and b .[7]
▶️Answer/Explanation
Markscheme
\({\text{OC}} = {\text{AB}} + {\text{OA}}\cos 60 + {\text{BC}}\cos 60\) M1
\( = {\text{AB}} + {\text{AB}} \times \frac{1}{2} + {\text{AB}} \times \frac{1}{2}\) A1
\( = 2{\text{AB}}\) AG
[2 marks]
\(\overrightarrow {{\text{OC}}} = 2\overrightarrow {{\text{AB}}} = \)2(b – a) M1A1
\(\overrightarrow {{\text{OD}}} = \overrightarrow {{\text{OC}}} + \overrightarrow {{\text{CD}}} \) M1
\( = \overrightarrow {{\text{OC}}} + \overrightarrow {{\text{AO}}} \) A1
= 2b – 2a – a = 2b – 3a A1
\(\overrightarrow {{\text{OE}}} = \overrightarrow {{\text{BC}}} \) M1
= 2b – 2a – b = b – 2a A1
[7 marks]