IBDP Maths analysis and approaches Topic: SL 2.5 :One-to-one and many-to-one functions HL Paper 1

Question

A function is defined as \(f(x) = k\sqrt x \), with \(k > 0\) and \(x \geqslant 0\) .

(a)     Sketch the graph of \(y = f(x)\) .

(b)     Show that f is a one-to-one function.

(c)     Find the inverse function, \({f^{ – 1}}(x)\) and state its domain.

(d)     If the graphs of \(y = f(x)\) and \(y = {f^{ – 1}}(x)\) intersect at the point (4, 4) find the value of k .

(e)     Consider the graphs of \(y = f(x)\) and \(y = {f^{ – 1}}(x)\) using the value of k found in part (d).

(i)     Find the area enclosed by the two graphs.

(ii)     The line x = c cuts the graphs of \(y = f(x)\) and \(y = {f^{ – 1}}(x)\) at the points P and Q respectively. Given that the tangent to \(y = f(x)\) at point P is parallel to the tangent to \(y = {f^{ – 1}}(x)\) at point Q find the value of c .

Answer/Explanation

Markscheme

(a)

    A1

Note: Award A1 for correct concavity, passing through (0, 0) and increasing.

Scales need not be there.

 

[1 mark]

 

(b)     a statement involving the application of the Horizontal Line Test or equivalent     A1

[1 mark]

 

(c)     \(y = k\sqrt x \)

for either \(x = k\sqrt y \) or \(x = \frac{{{y^2}}}{{{k^2}}}\)     A1

\({f^{ – 1}}(x) = \frac{{{x^2}}}{{{k^2}}}\)     A1

\({\text{dom}}\left( {{f^{ – 1}}(x)} \right) = \left[ {0,\infty } \right[\)     A1

[3 marks]

 

(d)     \(\frac{{{x^2}}}{{{k^2}}} = k\sqrt x \,\,\,\,\,\)or equivalent method     M1

\(k = \sqrt x \)

\(k = 2\)     A1

[2 marks]

 

(e)     (i)     \(A = \int_a^b {({y_1} – {y_2}){\text{d}}x} \)     (M1)

\(A = \int_0^4 {\left( {2{x^{\frac{1}{2}}} – \frac{1}{4}{x^2}} \right){\text{d}}x} \)     A1

\( = \left[ {\frac{4}{3}{x^{\frac{3}{2}}} – \frac{1}{{12}}{x^3}} \right]_0^4\)     A1

\( = \frac{{16}}{3}\)     A1

 

(ii)     attempt to find either \(f'(x)\) or \(({f^{ – 1}})'(x)\)     M1

\(f'(x) = \frac{1}{{\sqrt x }},{\text{ }}\left( {({f^{ – 1}})'(x) = \frac{x}{2}} \right)\)     A1A1

\(\frac{1}{{\sqrt c }} = \frac{c}{2}\)     M1

\(c = {2^{\frac{2}{3}}}\)     A1

[9 marks]

Total [16 marks]

Question

The function \(f\) is defined by \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\), for \(x \in \mathbb{R},\,\,x \ne  – \frac{d}{c}\).

The function \(g\) is defined by \(g\left( x \right) = \frac{{2x – 3}}{{x – 2}},\,\,x \in \mathbb{R},\,\,x \ne 2\)

Find the inverse function \({f^{ – 1}}\), stating its domain.[5]

a.

Express \(g\left( x \right)\) in the form \(A + \frac{B}{{x – 2}}\) where A, B are constants.[2]

b.i.

Sketch the graph of \(y = g\left( x \right)\). State the equations of any asymptotes and the coordinates of any intercepts with the axes.[3]

b.ii.

The function \(h\) is defined by \(h\left( x \right) = \sqrt x \), for \(x\) ≥ 0.

State the domain and range of \(h \circ g\).[4]

c.
Answer/Explanation

Markscheme

attempt to make \(x\) the subject of \(y = \frac{{ax + b}}{{cx + d}}\)      M1

\(y\left( {cx + d} \right) = ax + b\)      A1

\(x = \frac{{dy – b}}{{a – cy}}\)     A1

\({f^{ – 1}}\left( x \right) = \frac{{dx – b}}{{a – cx}}\)     A1

Note: Do not allow \(y = \) in place of \({f^{ – 1}}\left( x \right)\).

\(x \ne \frac{a}{c},\,\,\,\left( {x \in \mathbb{R}} \right)\)     A1

Note: The final A mark is independent.

[5 marks]

a.

\(g\left( x \right) = 2 + \frac{1}{{x – 2}}\)     A1A1

[2 marks]

b.i.

hyperbola shape, with single curves in second and fourth quadrants and third quadrant blank, including vertical asymptote \(x = 2\)     A1

horizontal asymptote \(y = 2\)     A1

intercepts \(\left( {\frac{3}{2},\,0} \right),\,\left( {0,\,\frac{3}{2}} \right)\)     A1

[3 marks]

b.ii.

the domain of \(h \circ g\) is \(x \leqslant \frac{3}{2},\,\,x > 2\)     A1A1

the range of \(h \circ g\) is \(y \geqslant 0,\,\,y \ne \sqrt 2 \)     A1A1

[4 marks]

c.
Scroll to Top