Home / IB DP Math AA: Topic : AHL 3.16 : The definition of the vector product of two vectors HL Paper 2

IB DP Math AA: Topic : AHL 3.16 : The definition of the vector product of two vectors HL Paper 2

Question

Consider the vectors a \( = \sin (2\alpha )\)i \( – \cos (2\alpha )\)j + k and b \( = \cos \alpha \)i \( – \sin \alpha \)jk, where \(0 < \alpha < 2\pi \).

Let \(\theta \) be the angle between the vectors a and b.

(a)     Express \(\cos \theta \) in terms of \(\alpha \).

(b)     Find the acute angle \(\alpha \) for which the two vectors are perpendicular.

(c)     For \(\alpha = \frac{{7\pi }}{6}\), determine the vector product of a and b and comment on the geometrical significance of this result.

▶️Answer/Explanation

Markscheme

(a)     \(\cos \theta = \frac{{\boldsymbol{ab}}}{{\left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right|}} = \frac{{\sin 2\alpha \cos \alpha + \sin \alpha \cos 2\alpha – 1}}{{\sqrt 2 \times \sqrt 2 }}{\text{ }}\left( { = \frac{{\sin 3\alpha – 1}}{2}} \right)\)     M1A1

 

(b)     \({\boldsymbol{a}} \bot {\boldsymbol{b}} \Rightarrow \cos \theta = 0\)     M1

\(\sin 2\alpha \cos \alpha + \sin \alpha \cos 2\alpha – 1 = 0\)

\(\alpha = 0.524{\text{ }}\left( { = \frac{\pi }{6}} \right)\)     A1

 

(c)

METHOD 1

\(\left| {\begin{array}{*{20}{c}}
  {\boldsymbol{i}}&{\boldsymbol{j}}&{\boldsymbol{k}} \\
  {\sin 2\alpha }&{ – \cos 2\alpha }&1 \\
  {\cos \alpha }&{ – \sin \alpha }&{ – 1}
\end{array}} \right|\)     (M1)

assuming \(\alpha = \frac{{7\pi }}{6}\)

Note: Allow substitution at any stage.

 

\(\left| {\begin{array}{*{20}{c}}
  \boldsymbol{i}&\boldsymbol{j}&\boldsymbol{k} \\
  {\frac{{\sqrt 3 }}{2}}&{ – \frac{1}{2}}&1 \\
  { – \frac{{\sqrt 3 }}{2}}&{\frac{1}{2}}&{ – 1}
\end{array}} \right|\)     A1

\(= \boldsymbol{i} \left( {\frac{1}{2} – \frac{1}{2}} \right) – \boldsymbol{j} \left( { – \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2}} \right) + \boldsymbol{k}\left( {\frac{{\sqrt 3 }}{2} \times \frac{1}{2} – \frac{1}{2} \times \frac{{\sqrt 3 }}{2}} \right)\)

= 0     A1

a and b are parallel     R1

Note: Accept decimal equivalents.

 

METHOD 2

from (a) \(\cos \theta = – 1{\text{ (and }}\sin \theta = 0)\)     M1A1

\(\boldsymbol{a} \times \boldsymbol{b}\) = 0     A1

a and b are parallel     R1

[8 marks]

Examiners report

This question was attempted by most candidates who in general were able to find the dot product of the vectors in part (a). However the simplification of the expression caused difficulties which affected the performance in part (b). Many candidates had difficulties in interpreting the meaning of a \( \times \) b = 0 in part (c).

Question

The diagram shows a cube OABCDEFG.

 

 

Let O be the origin, (OA) the x-axis, (OC) the y-axis and (OD) the z-axis.

Let M, N and P be the midpoints of [FG], [DG] and [CG], respectively.

The coordinates of F are (2, 2, 2).

(a)     Find the position vectors \(\overrightarrow {{\text{OM}}} \), \(\overrightarrow {{\text{ON}}} \) and \(\overrightarrow {{\text{OP}}} \) in component form.

(b)     Find \(\overrightarrow {{\text{MP}}}  \times \overrightarrow {{\text{MN}}} \).

(c)     Hence,

  (i)     calculate the area of the triangle MNP;

  (ii)     show that the line (AG) is perpendicular to the plane MNP;

  (iii)     find the equation of the plane MNP.

(d)     Determine the coordinates of the point where the line (AG) meets the plane MNP.

▶️Answer/Explanation

Markscheme

(a)     \(\overrightarrow {{\text{OM}}}  = \left( {\begin{array}{*{20}{c}}
  1 \\
  2 \\
  2
\end{array}} \right)\), \(\overrightarrow {{\text{ON}}}  = \left( {\begin{array}{*{20}{c}}
  0 \\
  1 \\
  2
\end{array}} \right)\) and \(\overrightarrow {{\text{OP}}}  = \left( {\begin{array}{*{20}{c}}
  0 \\
  2 \\
  1
\end{array}} \right)\)     A1A1A1

[3 marks]

 

(b)     \(\overrightarrow {{\text{MP}}}  = \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  0 \\
  { – 1}
\end{array}} \right)\) and \(\overrightarrow {{\text{MN}}}  = \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  { – 1} \\
  0
\end{array}} \right)\)     A1A1

\(\overrightarrow {{\text{MP}}}  \times \overrightarrow {{\text{MN}}}  = \left( {\begin{array}{*{20}{c}}
  i&j&k \\
  { – 1}&0&{ – 1} \\
  { – 1}&{ – 1}&0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  1 \\
  1
\end{array}} \right)\)     (M1)A1

[4 marks]

 

(c)     (i)     area of MNP \( = \frac{1}{2}\left| {\overrightarrow {{\text{MP}}}  \times \overrightarrow {{\text{MN}}} } \right|\)     M1

\( = \frac{1}{2}\left| {\left( {\begin{array}{*{20}{c}}
  { – 1} \\
  1 \\
  1
\end{array}} \right)} \right|\)

\( = \frac{{\sqrt 3 }}{2}\)     A1

 

(ii)     \(\overrightarrow {{\text{OA}}}  = \left( {\begin{array}{*{20}{c}}
  2 \\
  0 \\
  0
\end{array}} \right)\), \(\overrightarrow {{\text{OG}}}  = \left( {\begin{array}{*{20}{c}}
  0 \\
  2 \\
  2
\end{array}} \right)\)

\(\overrightarrow {{\text{AG}}}  = \left( {\begin{array}{*{20}{c}}
  { – 2} \\
  2 \\
  2
\end{array}} \right)\)     A1

since \(\overrightarrow {{\text{AG}}} = 2(\overrightarrow {{\text{MP}}}  \times \overrightarrow {{\text{MN}}} )\) AG is perpendicular to MNP     R1

 

(iii)     \(r \cdot \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  1 \\
  1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  1 \\
  2 \\
  2
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  1 \\
  1
\end{array}} \right)\)     M1A1

\(r \cdot \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  1 \\
  1
\end{array}} \right) = 3\) (accept \( – x + y + z = 3\))     A1

[7 marks]

 

(d)     \(r = \left( {\begin{array}{*{20}{c}}
  2 \\
  0 \\
  0
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}
  { – 2} \\
  2 \\
  2
\end{array}} \right)\)     A1

\(\left( {\begin{array}{*{20}{c}}
  {2 – 2\lambda } \\
  {2\lambda } \\
  {2\lambda }
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  1 \\
  1
\end{array}} \right) = 3\)     M1A1

\( – 2 + 2\lambda + 2\lambda + 2\lambda = 3\)

\(\lambda = \frac{5}{6}\)     A1

\(r = \left( {\begin{array}{*{20}{c}}
  2 \\
  0 \\
  0
\end{array}} \right) + \frac{5}{6}\left( {\begin{array}{*{20}{c}}
  { – 2} \\
  2 \\
  2
\end{array}} \right)\)     M1

coordinates of point \(\left( {\frac{1}{3},\frac{5}{3},\frac{5}{3}} \right)\)     A1

[6 marks]

Total [20 marks]

Examiners report

This was the most successfully answered question in part B, with many candidates achieving full marks. There were a few candidates who misread the question and treated the cube as a unit cube. The most common errors were either algebraic or arithmetic mistakes. A variety of notation forms were seen but in general were used consistently. In a few cases, candidates failed to show all the work or set it properly.

Question

The points A and B have position vectors \(\overrightarrow {{\text{OA}}} = \left\{ {\begin{array}{*{20}{c}} 1 \\ 2 \\ { – 2} \end{array}} \right\}\) and \(\overrightarrow {{\text{OB}}} = \left\{ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 2 \end{array}} \right\}\).

a.Find \(\overrightarrow {{\text{OA}}}  \times \overrightarrow {{\text{OB}}} \).[2]

b.Hence find the area of the triangle OAB.[2]

▶️Answer/Explanation

Markscheme

\(\overrightarrow {{\text{OA}}} \times \overrightarrow {{\text{OB}}} = \left( {\begin{array}{*{20}{c}} 4 \\ { – 4} \\ { – 2} \end{array}} \right)\)     (M1)A1

Note:     M1A0 can be awarded for attempt at a correct method shown, or correct method implied by the digits 4, 4, 2 found in the correct order.

[2 marks]

a.

\({\text{area}} = \frac{1}{2}\sqrt {{4^2} + {4^2} + {2^2}}  = 3\)     M1A1

[2 marks]

 

 
 

Question

The points A and B have coordinates (1, 2, 3) and (3, 1, 2) relative to an origin O.

a.(i)     Find \(\overrightarrow {{\text{OA}}}  \times \overrightarrow {{\text{OB}}} \) .

(ii)     Determine the area of the triangle OAB.

(iii)     Find the Cartesian equation of the plane OAB.[5]

b.(i)     Find the vector equation of the line \({L_1}\) containing the points A and B.

(ii)     The line \({L_2}\) has vector equation \(\left( {\begin{array}{*{20}{c}}
  x \\
  y \\
  z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  2 \\
  4 \\
  3
\end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}
  1 \\
  3 \\
  2
\end{array}} \right)\).

Determine whether or not \({L_1}\) and \({L_2}\) are skew.[7]

 
▶️Answer/Explanation

Markscheme

(i)     \(\overrightarrow {{\text{OA}}} \times \overrightarrow {{\text{OB}}} = \) i + 7j – 5k     A1

 

(ii)     area \( = \frac{1}{2}|\)i + 7j – 5k\(| = \frac{{5\sqrt 3 }}{2}{\text{(4.33)}}\)     M1A1

 

(iii)     equation of plane is \(x + 7y – 5z = k\)     M1

\(x + 7y – 5z = 0\)     A1

[5 marks]

a.

(i)     direction of line = (3i + j + 2k) – (i + 2j + 3k) = 2ijk     M1A1

equation of line is

r = (i + 2j + 3k) + \(\lambda \)(2ijk)     A1

 

(ii)     at a point of intersection,

\(1 + 2\lambda = 2 + \mu \)

\(2 – \lambda = 4 + 3\mu \)     M1A1

\(3 – \lambda = 3 + 2\mu \)

solving the \({2^{{\text{nd}}}}\) and \({3^{{\text{rd}}}}\) equations, \(\lambda = 4{\text{, }}\mu = – 2\)     A1

these values do not satisfy the \({1^{{\text{st}}}}\) equation so the lines are skew     R1 

[7 marks]

 

Question

The function f is defined on the domain [0, 2] by \(f(x) = \ln (x + 1)\sin (\pi x)\) .

a.Obtain an expression for \(f'(x)\) .[3]

b.Sketch the graphs of f and \(f’\) on the same axes, showing clearly all x-intercepts.[4]

c.Find the x-coordinates of the two points of inflexion on the graph of f .[2]

d.Find the equation of the normal to the graph of f where x = 0.75 , giving your answer in the form y = mx + c .[3]

e.Consider the points \({\text{A}}\left( {a{\text{ }},{\text{ }}f(a)} \right)\) , \({\text{B}}\left( {b{\text{ }},{\text{ }}f(b)} \right)\) and \({\text{C}}\left( {c{\text{ }},{\text{ }}f(c)} \right)\) where a , b and c \((a < b < c)\) are the solutions of the equation \(f(x) = f'(x)\) . Find the area of the triangle ABC.[6]

 
▶️Answer/Explanation

Markscheme

\(f'(x) = \frac{1}{{x + 1}}\sin (\pi x) + \pi \ln (x + 1)\cos (\pi x)\)     M1A1A1

[3 marks]

a.

     A4

Note: Award A1A1 for graphs, A1A1 for intercepts.

 

[4 marks]

b.

0.310, 1.12     A1A1

[2 marks]

c.

\(f'(0.75) = – 0.839092\)     A1

so equation of normal is \(y – 0.39570812 = \frac{1}{{0.839092}}(x – 0.75)\)     M1

\(y = 1.19x – 0.498\)     A1

[3 marks]

d.

\({\text{A}}(0,{\text{ }}0)\)

\({\text{B(}}\overbrace {0.548 \ldots }^c,\overbrace {0.432 \ldots }^d)\)     A1

\({\text{C(}}\overbrace {1.44 \ldots }^e,\overbrace { – 0.881 \ldots }^f)\)     A1

Note: Accept coordinates for B and C rounded to 3 significant figures.

 

area \(\Delta {\text{ABC}} = \frac{1}{2}|\)(ci + dj) \( \times \) (ei + fj)\(|\)     M1A1

\( = \frac{1}{2}(de – cf)\)     A1

\( = 0.554\)     A1

[6 marks]

e.

Examiners report

[N/A]

a.

[N/A]

b.

[N/A]

c.

[N/A]

d.

[N/A]

e.
Scroll to Top