Home / IBDP Maths analysis and approaches Topic: AHL 3.17 Vector equation of a plane HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 3.17 Vector equation of a plane HL Paper 1

Question

The plane $\Pi_1$ has equation $2x + 6y – 2z = 5$.

(a) Verify that the point $A(2, \frac{1}{2}, 1)$ lies on the plane $\Pi_1$.

The plane $\Pi_2$ is given by $(k^2 – 6)x + (2k + 3)y + pz = q$, where $p, q, k \in \mathbb{R}$ and $p \neq 0$.

(b) In the case where $p = -6$, $\Pi_2$ is perpendicular to $\Pi_1$ and $A$ lies on $\Pi_2$.
Find the value of $k$ and the value of $q$.

For parts (c), (d), and (e), it is now given that $\Pi_2$ is parallel to $\Pi_1$ with $k = 3$.

(c) Determine the value of $p$.

It is also given that $q = -\frac{51}{2}$.

The line through $A$ that is perpendicular to $\Pi_2$ meets $\Pi_2$ at the point $B$.

(d) (i) Find the coordinates of $B$.

(ii) Hence, show that the perpendicular distance between $\Pi_1$ and $\Pi_2$ is $\sqrt{11}$.

(e) Find the equation of a third parallel plane $\Pi_3$ which is also a perpendicular distance of $\sqrt{11}$ from $\Pi_1$.

▶️Answer/Explanation

Solution:-

(a) $2 \times 2 + 6 \times \frac{1}{2} – 2 \times 1 = 5$

(b) $2(k^2 – 6) + 6(2k + 3) + 12 = 0$

equating their scalar product of the direction normal to zero

$2(k^2 – 6) + 6(2k + 3) + 12 = 0$

$k^2 – 6 + 6k + 9 + 6 = 0$ or $(k + 3)^2 = 0$

$k = -3$

attempt to substitute k, p and coordinates of A into $\Pi_2$

$q = 3 \times 2 – 3 \times \frac{1}{2} – 6 \times 1$

$q = -\frac{3}{2}$

(c) attempt to equate a pair of ratios or equate vector product to zero vector

$p = -3$

(d)(i) attempt to find the vector equation of the line through A perpendicular to $\Pi_1$

$r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 6 \\ -2 \end{pmatrix}$

attempt to substitute their vector equation into $\Pi_2$

$3(2 + 2\lambda) + 9(\frac{1}{2} + 6\lambda) – 3(1 – 2\lambda) = -\frac{51}{2}$

$6 + 6\lambda + \frac{9}{2} + 54\lambda – 3 + 6\lambda = -\frac{51}{2}$

$\lambda = -\frac{1}{2}$

(d)

(e) Valid method to find a point C on $\Pi_2$ using $\overline{AC} = \overline{BA}$ or $\overline{BC} = 2\overline{BA}$ or A as the midpoint of BC.

$\lambda=\frac{1}{2}, \overline{OC} = \begin{pmatrix} 2 \\ \frac{1}{2} \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}, \overline{OC} = \frac{1}{2} \begin{pmatrix} 2 \\ 6 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ \frac{1}{2} \\ 1 \end{pmatrix}, \overline{OA} = \frac{1}{2}(\overline{OB} + \overline{OC})$

point on $\Pi_2$ is $(3, \frac{7}{2}, 0)$

attempt to substitute their $(3, \frac{7}{2}, 0)$ into $\Pi_3: x + 3y – z = d$ (or equivalent)

$1 \times 3 + 3 \times \frac{7}{2} – 1 \times 0 = \frac{27}{2}$

$\Pi_3: x + 3y – z = \frac{27}{2} (2x + 6y – 2z = 27)$ (or equivalent)

Solution

(a) Satisfying the point $A(2, \frac{1}{2}, 1)$ in the equation of plane $2x + 6y – 2z = 5$, we get

LHS $2 \times 2 + 6 \times \frac{1}{2} – 2 \times 1 = 5$ = RHS,

hence point A lies on the plane.

(b) Since plane $\Pi_2$ is perpendicular to $\Pi_1$, so the scalar product of their normal vector must be zero.

$2(k^2 – 6) + 6(2k + 3) + 12 = 0$

$k^2 – 6 + 6k + 9 + 6 = 0$ or $(k + 3)^2 = 0$

$k = -3$

Substitute $p = -6$, $k = -3$ in plane $\Pi_2$ and the point $A(2, \frac{1}{2}, 1)$ lying on plane $\Pi_2$, we get 

$q = 3 \times 2 – 3 \times \frac{1}{2} – 6 \times 1$

$q = -\frac{3}{2}$

 Question

Consider the three planes

1 : 2x – y + z = 4
2 : x – 2y + 3z = 5
3 : -9x + 3y – 2z = 32

(a) Show that the three planes do not intersect.
(b) (i) Verify that the point P(1 , -2 , 0) lies on both ∏1 and ∏2 .
      (ii) Find a vector equation of L, the line of intersection of ∏1 and ∏2 .
(c) Find the distance between L and ∏3 .

▶️Answer/Explanation

Ans:

(a) METHOD 1
attempt to eliminate a variable
obtain a pair of equations in two variables

EITHER

-3x + z = -3 and
-3x + z = 44

OR

-5x + y = -7 and
-5x + y = 40

OR

3x – z = 3 and
3x – z = \(\frac{79}{5}\)

THEN

the two lines are parallel ( – 3 ≠ 44 or – 7 ≠ 40 or 3 ≠ -\(\frac{79}{5}\)

Note: There are other possible pairs of equations in two variables.
To obtain the final R1, at least the initial M1 must have been awarded.

hence the three planes do not intersect

METHOD 2

vector product of the two normals = \(\begin{pmatrix}-1\\-5\\-3\end{pmatrix}\) (or equivalent)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\)      (or equivalent)

Note: Award A0 if “r =” is missing. Subsequent marks may still be awarded.

Attempt to substitute (1 + λ, -2 + 5λ, 3λ) in ∏3

-9(1 + λ) + 3(-2+5λ) – 2(3λ) = 32

− 15 = 32, a contradiction
hence the three planes do not intersect

(b) (i)     ∏1 : 2 + 2 + 0 = 4 and ∏2 : 1 + 4 + 0 = 5

      (ii) METHOD 1
attempt to find the vector product of the two normals

\(\begin{pmatrix}2\\-1 \\1 \end{pmatrix} \times \begin{pmatrix}1\\-2 \\3 \end{pmatrix}\)

\(=\begin{pmatrix}-1\\-5 \\-3 \end{pmatrix}\)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\) 

Note: Award A1A0 if “r =” is missing.
Accept any multiple of the direction vector.
Working for (b)(ii) may be seen in part (a) Method 2. In this case penalize
lack of “r =” only once.

METHOD 2
attempt to eliminate a variable from ∏1 and ∏2

3x – z = 3 OR 3y – 5z = -6  OR 5x – y = 7
Let x = t
substituting x = t in 3x – z = 3 to obtain
z = -3 + 3t and y = 5t – 7 (for all three variables in parametric form)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\) 

Note: Award A1A0 if “r =” is missing.
Accept any multiple of the direction vector. Accept other position vectors
which satisfy both the planes ∏1 and ∏2 .

(c) METHOD 1
the line connecting L and ∏3 is given by L1
attempt to substitute position and direction vector to form L1

\(s = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + t \begin{pmatrix}-9\\3 \\-2 \end{pmatrix}\)
substitute (1 – 9t, – 2 + 3t, – 2t) in ∏3
-9(1-9t) + 3(-2+3t) – 2(-2t) = 32
\(94t = 47\Rightarrow t=\frac{1}{2}\)

attempt to find distance between (1, -2,0) and their point \(\begin{pmatrix}-\frac{7}{2}, & -\frac{1}{2}, & -1 \end{pmatrix}\)

\(=\left | \begin{pmatrix}1\\-2 \\0 \end{pmatrix} +\frac{1}{2}\begin{pmatrix}-9\\3 \\-2 \end{pmatrix}-\begin{pmatrix}1\\-2 \\0 \end{pmatrix}\right | = \frac{1}{2}\sqrt{(-9)^{2}+3^{2}+(-2)^{2}}\)

\(=\frac{\sqrt{94}}{2}\)

METHOD 2

unit normal vector equation of ∏3 is given by

\(=\frac{32}{\sqrt{94}}\)

Question

Consider the three planes

1 : 2x – y + z = 4
2 : x – 2y + 3z = 5
3 : -9x + 3y – 2z = 32

(a) Show that the three planes do not intersect.
(b) (i) Verify that the point P(1 , -2 , 0) lies on both ∏1 and ∏2 .
      (ii) Find a vector equation of L, the line of intersection of ∏1 and ∏2 .
(c) Find the distance between L and ∏3 .

▶️Answer/Explanation

Ans:

(a) METHOD 1
attempt to eliminate a variable
obtain a pair of equations in two variables

EITHER

-3x + z = -3 and
-3x + z = 44

OR

-5x + y = -7 and
-5x + y = 40

OR

3x – z = 3 and
3x – z = \(\frac{79}{5}\)

THEN

the two lines are parallel ( – 3 ≠ 44 or – 7 ≠ 40 or 3 ≠ -\(\frac{79}{5}\)

Note: There are other possible pairs of equations in two variables.
To obtain the final R1, at least the initial M1 must have been awarded.

hence the three planes do not intersect

METHOD 2

vector product of the two normals = \(\begin{pmatrix}-1\\-5\\-3\end{pmatrix}\) (or equivalent)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\)      (or equivalent)

Note: Award A0 if “r =” is missing. Subsequent marks may still be awarded.

Attempt to substitute (1 + λ, -2 + 5λ, 3λ) in ∏3

-9(1 + λ) + 3(-2+5λ) – 2(3λ) = 32

− 15 = 32, a contradiction
hence the three planes do not intersect

(b) (i)     ∏1 : 2 + 2 + 0 = 4 and ∏2 : 1 + 4 + 0 = 5

      (ii) METHOD 1
attempt to find the vector product of the two normals

\(\begin{pmatrix}2\\-1 \\1 \end{pmatrix} \times \begin{pmatrix}1\\-2 \\3 \end{pmatrix}\)

\(=\begin{pmatrix}-1\\-5 \\-3 \end{pmatrix}\)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\) 

Note: Award A1A0 if “r =” is missing.
Accept any multiple of the direction vector.
Working for (b)(ii) may be seen in part (a) Method 2. In this case penalize
lack of “r =” only once.

METHOD 2
attempt to eliminate a variable from ∏1 and ∏2

3x – z = 3 OR 3y – 5z = -6  OR 5x – y = 7
Let x = t
substituting x = t in 3x – z = 3 to obtain
z = -3 + 3t and y = 5t – 7 (for all three variables in parametric form)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\) 

Note: Award A1A0 if “r =” is missing.
Accept any multiple of the direction vector. Accept other position vectors
which satisfy both the planes ∏1 and ∏2 .

(c) METHOD 1
the line connecting L and ∏3 is given by L1
attempt to substitute position and direction vector to form L1

\(s = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + t \begin{pmatrix}-9\\3 \\-2 \end{pmatrix}\)
substitute (1 – 9t, – 2 + 3t, – 2t) in ∏3
-9(1-9t) + 3(-2+3t) – 2(-2t) = 32
\(94t = 47\Rightarrow t=\frac{1}{2}\)

attempt to find distance between (1, -2,0) and their point \(\begin{pmatrix}-\frac{7}{2}, & -\frac{1}{2}, & -1 \end{pmatrix}\)

\(=\left | \begin{pmatrix}1\\-2 \\0 \end{pmatrix} +\frac{1}{2}\begin{pmatrix}-9\\3 \\-2 \end{pmatrix}-\begin{pmatrix}1\\-2 \\0 \end{pmatrix}\right | = \frac{1}{2}\sqrt{(-9)^{2}+3^{2}+(-2)^{2}}\)

\(=\frac{\sqrt{94}}{2}\)

METHOD 2

unit normal vector equation of ∏3 is given by

\(=\frac{32}{\sqrt{94}}\)

Question

Consider the three planes

1 : 2x – y + z = 4
2 : x – 2y + 3z = 5
3 : -9x + 3y – 2z = 32

(a) Show that the three planes do not intersect.
(b) (i) Verify that the point P(1 , -2 , 0) lies on both ∏1 and ∏2 .
      (ii) Find a vector equation of L, the line of intersection of ∏1 and ∏2 .
(c) Find the distance between L and ∏3 .

▶️Answer/Explanation

Ans:

(a) METHOD 1
attempt to eliminate a variable
obtain a pair of equations in two variables

EITHER

-3x + z = -3 and
-3x + z = 44

OR

-5x + y = -7 and
-5x + y = 40

OR

3x – z = 3 and
3x – z = \(\frac{79}{5}\)

THEN

the two lines are parallel ( – 3 ≠ 44 or – 7 ≠ 40 or 3 ≠ -\(\frac{79}{5}\)

Note: There are other possible pairs of equations in two variables.
To obtain the final R1, at least the initial M1 must have been awarded.

hence the three planes do not intersect

METHOD 2

vector product of the two normals = \(\begin{pmatrix}-1\\-5\\-3\end{pmatrix}\) (or equivalent)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\)      (or equivalent)

Note: Award A0 if “r =” is missing. Subsequent marks may still be awarded.

Attempt to substitute (1 + λ, -2 + 5λ, 3λ) in ∏3

-9(1 + λ) + 3(-2+5λ) – 2(3λ) = 32

− 15 = 32, a contradiction
hence the three planes do not intersect

(b) (i)     ∏1 : 2 + 2 + 0 = 4 and ∏2 : 1 + 4 + 0 = 5

      (ii) METHOD 1
attempt to find the vector product of the two normals

\(\begin{pmatrix}2\\-1 \\1 \end{pmatrix} \times \begin{pmatrix}1\\-2 \\3 \end{pmatrix}\)

\(=\begin{pmatrix}-1\\-5 \\-3 \end{pmatrix}\)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\) 

Note: Award A1A0 if “r =” is missing.
Accept any multiple of the direction vector.
Working for (b)(ii) may be seen in part (a) Method 2. In this case penalize
lack of “r =” only once.

METHOD 2
attempt to eliminate a variable from ∏1 and ∏2

3x – z = 3 OR 3y – 5z = -6  OR 5x – y = 7
Let x = t
substituting x = t in 3x – z = 3 to obtain
z = -3 + 3t and y = 5t – 7 (for all three variables in parametric form)

\(r = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + \lambda \begin{pmatrix}1\\5 \\3 \end{pmatrix}\) 

Note: Award A1A0 if “r =” is missing.
Accept any multiple of the direction vector. Accept other position vectors
which satisfy both the planes ∏1 and ∏2 .

(c) METHOD 1
the line connecting L and ∏3 is given by L1
attempt to substitute position and direction vector to form L1

\(s = \begin{pmatrix}1\\-2 \\0 \end{pmatrix} + t \begin{pmatrix}-9\\3 \\-2 \end{pmatrix}\)
substitute (1 – 9t, – 2 + 3t, – 2t) in ∏3
-9(1-9t) + 3(-2+3t) – 2(-2t) = 32
\(94t = 47\Rightarrow t=\frac{1}{2}\)

attempt to find distance between (1, -2,0) and their point \(\begin{pmatrix}-\frac{7}{2}, & -\frac{1}{2}, & -1 \end{pmatrix}\)

\(=\left | \begin{pmatrix}1\\-2 \\0 \end{pmatrix} +\frac{1}{2}\begin{pmatrix}-9\\3 \\-2 \end{pmatrix}-\begin{pmatrix}1\\-2 \\0 \end{pmatrix}\right | = \frac{1}{2}\sqrt{(-9)^{2}+3^{2}+(-2)^{2}}\)

\(=\frac{\sqrt{94}}{2}\)

METHOD 2

unit normal vector equation of ∏3 is given by

\(=\frac{32}{\sqrt{94}}\)

Scroll to Top