IB DP Math AA Topic: AHL 5.12 Higher derivatives.: IB Style Questions HL Paper 2

Question

Consider the function \(f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x – 9,{\text{ }}0 \leqslant x < \frac{\pi }{2}\).

Let \(u = \tan x\).

a.i.Determine an expression for \(f’(x)\) in terms of \(x\).[2]

a.ii.Sketch a graph of \(y = f’(x)\) for \(0 \leqslant x < \frac{\pi }{2}\).[4]

a.iii.Find the \(x\)-coordinate(s) of the point(s) of inflexion of the graph of \(y = f(x)\), labelling these clearly on the graph of \(y = f’(x)\).[2]

b.i.Express \(\sin x\) in terms of \(\mu \).[2]

b.ii.Express \(\sin 2x\) in terms of \(u\).[3]

b.iii.Hence show that \(f(x) = 0\) can be expressed as \({u^3} – 7{u^2} + 15u – 9 = 0\).[2]

c.Solve the equation \(f(x) = 0\), giving your answers in the form \(\arctan k\) where \(k \in \mathbb{Z}\).[3]

▶️Answer/Explanation

Markscheme

\(f’(x) = 4\sin x\cos x + 14\cos 2x + {\sec ^2}x\) (or equivalent)     (M1)A1

[2 marks]

a.i.

     A1A1A1A1

Note:     Award A1 for correct behaviour at \(x = 0\), A1 for correct domain and correct behaviour for \(x \to \frac{\pi }{2}\), A1 for two clear intersections with \(x\)-axis and minimum point, A1 for clear maximum point.

[4 marks]

a.ii.

\(x = 0.0736\)     A1

\(x = 1.13\)     A1

[2 marks]

a.iii.

attempt to write \(\sin x\) in terms of \(u\) only     (M1)

\(\sin x = \frac{u}{{\sqrt {1 + {u^2}} }}\)     A1

[2 marks]

b.i.

\(\cos x = \frac{1}{{\sqrt {1 + {u^2}} }}\)     (A1)

attempt to use \(\sin 2x = 2\sin x\cos x{\text{ }}\left( { = 2\frac{u}{{\sqrt {1 + {u^2}} }}\frac{1}{{\sqrt {1 + {u^2}} }}} \right)\)     (M1)

\(\sin 2x = \frac{{2u}}{{1 + {u^2}}}\)     A1

[3 marks]

b.ii.

\(2{\sin ^2}x + 7\sin 2x + \tan x – 9 = 0\)

\(\frac{{2{u^2}}}{{1 + {u^2}}} + \frac{{14u}}{{1 + {u^2}}} + u – 9{\text{ }}( = 0)\)     M1

\(\frac{{2{u^2} + 14u + u(1 + {u^2}) – 9(1 + {u^2})}}{{1 + {u^2}}} = 0\) (or equivalent)     A1

\({u^3} – 7{u^2} + 15u – 9 = 0\)     AG

[2 marks]

b.iii.

\(u = 1\) or \(u = 3\)     (M1)

\(x = \arctan (1)\)     A1

\(x = \arctan (3)\)     A1

Note:     Only accept answers given the required form.

[3 marks]

Scroll to Top