Home / IBDP Maths analysis and approaches Topic: AHL 5.14 Implicit differentiation HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 5.14 Implicit differentiation HL Paper 1

Question

Consider the curve with equation \({x^2} + xy + {y^2} = 3\).

(a)     Find in terms of k, the gradient of the curve at the point (−1, k).

(b)     Given that the tangent to the curve is parallel to the x-axis at this point, find the value of k.

▶️Answer/Explanation

Markscheme

(a)     Attempting implicit differentiation     M1

\(2x + y + x\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     A1

EITHER

Substituting \(x = – 1,{\text{ }}y = k\,\,\,\,\,\)e.g. \( – 2 + k – \frac{{{\text{d}}y}}{{{\text{d}}x}} + 2k\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     M1

Attempting to make \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) the subject     M1

OR

Attempting to make \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) the subject e.g. \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ – (2x + y)}}{{x + 2y}}\)     M1

Substituting \(x = – 1,{\text{ }}y = k{\text{ into }}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1

THEN

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2 – k}}{{2k – 1}}\)     A1     N1

 

(b)     Solving \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0{\text{ for }}k{\text{ gives }}k = 2\)     A1

[6 marks]

 

Question

Consider the part of the curve \(4{x^2} + {y^2} = 4\) shown in the diagram below.

 

 

(a)     Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of x and y .

(b)     Find the gradient of the tangent at the point \(\left( {\frac{2}{{\sqrt 5 }},\frac{2}{{\sqrt 5 }}} \right)\).

(c)     A bowl is formed by rotating this curve through \(2\pi \) radians about the x-axis.

Calculate the volume of this bowl.

▶️Answer/Explanation

Markscheme

(a)     \(8x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     M1A1

Note: Award M1A0 for \(8x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4\) .

 

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = – \frac{{4x}}{y}\)     A1

 

(b)     – 4     A1

 

(c)     \(V = \int {\pi {y^2}{\text{d}}x} \) or equivalent     M1

\(V = \pi \int_0^1 {(4 – 4{x^2}){\text{d}}x} \)     A1

\( = \pi \left[ {4x – \frac{4}{3}{x^3}} \right]_0^1\)     A1

\( = \frac{{8\pi }}{3}\)     A1

Note: If it is correct except for the omission of \(\pi \) , award 2 marks.

 

[8 marks]

Question

Show that the points (0, 0) and (\(\sqrt {2\pi } \) , \( – \sqrt {2\pi } \)) on the curve \({{\text{e}}^{\left( {x + y} \right)}} = \cos \left( {xy} \right)\) have a common tangent.

▶️Answer/Explanation

Markscheme

attempt at implicit differentiation     M1

\({{\text{e}}^{\left( {x + y} \right)}}\left( {1 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = – \sin \left( {xy} \right)\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y} \right)\)     A1A1

let \(x = 0\), \(y = 0\)     M1

\({{\text{e}}^0}\left( {1 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = 0\)

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = – 1\)     A1

let \(x = \sqrt {2\pi } \) , \(y = – \sqrt {2\pi } \)

\({{\text{e}}^0}\left( {1 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = – \sin \left( {- 2\pi } \right)\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y} \right) = 0\)

so \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = – 1\)     A1

since both points lie on the line \(y = – x\) this is a common tangent     R1

Note: \(y = – x\) must be seen for the final R1. It is not sufficient to note that the gradients are equal.

[7 marks]

Question

The curve C has equation \(2{x^2} + {y^2} = 18\). Determine the coordinates of the four points on C at which the normal passes through the point (1, 0) .

▶️Answer/Explanation

Markscheme

\(4x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = -\frac{{2x}}{y}\)     M1A1

 Note: Allow follow through on incorrect \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) from this point.

gradient of normal at (a, b) is \(\frac{b}{{2a}}\)

 Note: No further A marks are available if a general point is not used

equation of normal at (ab) is \(y – b = \frac{b}{{2a}}(x – a)\left( { \Rightarrow y = \frac{b}{{2a}}x + \frac{b}{2}} \right)\)     M1A1

substituting (1, 0)     M1 

\(b = 0\) or \(a = -1\)     A1A1

four points are \((3,{\text{ }}0),{\text{ }}( – 3,{\text{ 0}}),{\text{ }}( – 1,{\text{ }}4),{\text{ }}( – 1,{\text{ }} – 4)\)    A1A1 

 Note: Award A1A0 for any two points correct.

[9 marks]

Question

Let \({x^3}y = a\sin nx\) . Using implicit differentiation, show that

\[{x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + ({n^2}{x^2} + 6)xy = 0\] .

▶️Answer/Explanation

Markscheme

\({x^3}y = a\sin nx\)

attempt to differentiate implicitly     M1

\( \Rightarrow 3{x^2}y + {x^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = an\cos nx\)     A2 

Note: Award A1 for two out of three correct, A0 otherwise.

 

\( \Rightarrow 6xy + 3{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + 3{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = -a{n^2}\sin nx\)     A2 

Note: Award A1 for three or four out of five correct, A0 otherwise.

\( \Rightarrow 6xy + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = -a{n^2}\sin nx\)

\( \Rightarrow {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + 6xy + {n^2}{x^3}y = 0\)     A1

\( \Rightarrow {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + ({n^2}{x^2} + 6)xy = 0\)     AG

[6 marks]

Question

Consider the curve defined by the equation \({x^2} + \sin y – xy = 0\) .

a.Find the gradient of the tangent to the curve at the point \((\pi ,{\text{ }}\pi )\) .[6]

 

b.Hence, show that \(\tan \theta  = \frac{1}{{1 + 2\pi }}\), where \(\theta \) is the acute angle between the tangent to the curve at \((\pi ,{\text{ }}\pi )\) and the line y = x .[3]

 
▶️Answer/Explanation

Markscheme

a.attempt to differentiate implicitly     M1

\(2x + \cos y\frac{{{\text{d}}y}}{{{\text{d}}x}} – y – x\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     A1A1 

Note: A1 for differentiating \({x^2}\) and sin y ; A1 for differentiating xy.

substitute x and y by \(\pi \)     M1

\(2\pi  – \frac{{{\text{d}}y}}{{{\text{d}}x}} – \pi  – \pi \frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{\pi }{{1 + \pi }}\)     M1A1 

Note: M1 for attempt to make dy/dx the subject. This could be seen earlier.

[6 marks]

b

\(\theta  = \frac{\pi }{4} – \arctan \frac{\pi }{{1 + \pi }}\) (or seen the other way)     M1

\(\tan \theta  = \tan \left( {\frac{\pi }{4} – \arctan \frac{\pi }{{1 + \pi }}} \right) = \frac{{1 – \frac{\pi }{{1 + \pi }}}}{{1 + \frac{\pi }{{1 + \pi }}}}\)     M1A1

\(\tan \theta  = \frac{1}{{1 + 2\pi }}\)     AG

[3 marks]

 

 

 

Question

A curve is defined by the equation \(8y\ln x – 2{x^2} + 4{y^2} = 7\). Find the equation of the tangent to the curve at the point where x = 1 and \(y > 0\).

▶️Answer/Explanation

Markscheme

\(8y \times \frac{1}{x} + 8\frac{{{\text{d}}y}}{{{\text{d}}x}}\ln x – 4x + 8y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     M1A1A1

Note: M1 for attempt at implicit differentiation. A1 for differentiating \(8y\ln x\), A1 for differentiating the rest.

 

when \(x = 1,{\text{ }}8y \times 0 – 2 \times 1 + 4{y^2} = 7\)     (M1)

\({y^2} = \frac{9}{4} \Rightarrow y = \frac{3}{2}{\text{ (as }}y > 0)\)     A1

at \(\left( {1,\frac{3}{2}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = – \frac{2}{3}\)     A1

\(y – \frac{3}{2} = – \frac{2}{3}(x – 1)\) or \(y = – \frac{2}{3}x + \frac{{13}}{6}\)     A1

[7 marks]

Question

The curve C is given implicitly by the equation \(\frac{{{x^2}}}{y} – 2x = \ln y\) for \(y > 0\).

a.Express \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of x and y.[4]

 

b.Find the value of \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) at the point on C where y = 1 and \(x > 0\).[2]

 
▶️Answer/Explanation

Markscheme

attempt at implicit differentiation     M1

EITHER

\(\frac{{2x}}{y} – \frac{{{x^2}}}{{{y^2}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} – 2 = \frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     A1A1

Note: Award A1 for each side.

 

a.\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\frac{{2x}}{y} – 2}}{{\frac{1}{y} + \frac{{{x^2}}}{{{y^2}}}}}{\text{ }}\left( { = \frac{{2xy – 2{y^2}}}{{{x^2} + y}}} \right)\)     A1

OR

after multiplication by y

\(2x – 2y – 2x\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}x}}\ln y + y\frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     A1A1

Note: Award A1 for each side.

 

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2(x – y)}}{{1 + 2x + \ln y}}\)     A1

[4 marks]

b.

for \(y = 1,{\text{ }}{x^2} – 2x = 0\)

\(x = (0{\text{ or) 2}}\)     A1

for \(x = 2\), \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{2}{5}\)     A1

[2 marks]

 
 

Question

The curve C is given implicitly by the equation \(\frac{{{x^2}}}{y} – 2x = \ln y\) for \(y > 0\).

a.Express \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of x and y.[4]

 

b.Find the value of \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) at the point on C where y = 1 and \(x > 0\).[2]

 
▶️Answer/Explanation

Markscheme

attempt at implicit differentiation     M1

EITHER

\(\frac{{2x}}{y} – \frac{{{x^2}}}{{{y^2}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} – 2 = \frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     A1A1

Note: Award A1 for each side.

 

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\frac{{2x}}{y} – 2}}{{\frac{1}{y} + \frac{{{x^2}}}{{{y^2}}}}}{\text{ }}\left( { = \frac{{2xy – 2{y^2}}}{{{x^2} + y}}} \right)\)     A1

OR

after multiplication by y

\(2x – 2y – 2x\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}x}}\ln y + y\frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     A1A1

Note: Award A1 for each side.

a. 

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2(x – y)}}{{1 + 2x + \ln y}}\)     A1

[4 marks]

b.

for \(y = 1,{\text{ }}{x^2} – 2x = 0\)

\(x = (0{\text{ or) 2}}\)     A1

for \(x = 2\), \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{2}{5}\)     A1

[2 marks]

 

 

Question

A curve has equation \({x^3}{y^2} + {x^3} – {y^3} + 9y = 0\). Find the coordinates of the three points on the curve where \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\).

▶️Answer/Explanation

Markscheme

\(3{x^2}{y^2} + 2{x^3}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 3{x^2} – 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + 9\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     M1M1A1

Note:     First M1 for attempt at implicit differentiation, second M1 for use of product rule.

\(\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3{x^2}{y^2} + 3{x^2}}}{{3{y^2} – 2{x^3}y – 9}}} \right)\)

\( \Rightarrow 3{x^2} + 3{x^2}{y^2} = 0\)     (A1)

\( \Rightarrow 3{x^2}\left( {1 + {y^2}} \right) = 0\)

\(x = 0\)     A1

Note:     Do not award A1 if extra solutions given eg \(y =  \pm 1\).

substituting \(x = 0\) into original equation     (M1)

\({y^3} – 9y = 0\)

\(y(y + 3)(y – 3) = 0\)

\(y = 0,{\text{ }}y =  \pm 3\)

coordinates \((0, 0), (0, 3), (0, – 3)\)     A1

[7 marks]

Examiners report

The majority of candidates were able to apply implicit differentiation and the product rule correctly to obtain \(3{x^2}\left( {1 + {y^2}} \right) = 0\). The better then recognised that \(x = 0\) was the only possible solution. Such candidates usually went on to obtain full marks. A number decided that \(y =  \pm 1\) though then made no further progress. The solution set \(x = 0\) and \(y =  \pm i\) was also occasionally seen. A small minority found the correct x and y values for the three co-ordinates but then surprisingly expressed them as \({\text{(0, 0), (3, 0)}}\) and \((- 3, 0)\).

Question

A curve has equation \(\arctan {x^2} + \arctan {y^2} = \frac{\pi }{4}\).

(a)     Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of x and y.

(b)     Find the gradient of the curve at the point where \(x = \frac{1}{{\sqrt 2 }}\) and \(y < 0\).

▶️Answer/Explanation

Markscheme

(a)     METHOD 1

\(\frac{{2x}}{{1 + {x^4}}} + \frac{{2y}}{{1 + {y^4}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     M1A1A1

 

Note:     Award M1 for implicit differentiation, A1 for LHS and A1 for RHS.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \frac{{x\left( {1 + {y^4}} \right)}}{{y\left( {1 + {x^4}} \right)}}\)     A1

METHOD 2

\({y^2} = \tan \left( {\frac{\pi }{4} – \arctan {x^2}} \right)\)

\( = \frac{{\tan \frac{\pi }{4} – \tan \left( {\arctan {x^2}} \right)}}{{1 + \left( {\tan \frac{\pi }{4}} \right)\left( {\tan \left( {\arctan {x^2}} \right)} \right)}}\)     (M1)

\( = \frac{{1 – {x^2}}}{{1 + {x^2}}}\)     A1

\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ – 2x\left( {1 + {x^2}} \right) – 2x\left( {1 – {x^2}} \right)}}{{{{\left( {1 + {x^2}} \right)}^2}}}\)     M1

\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ – 4x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\)

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \frac{{2x}}{{y{{\left( {1 + {x^2}} \right)}^2}}}\)     A1

\(\left( { = \frac{{2x\sqrt {1 + {x^2}} }}{{\sqrt {1 – {x^2}} {{\left( {1 + {x^2}} \right)}^2}}}} \right)\)

[4 marks]

 

(b)     \({y^2} = \tan \left( {\frac{\pi }{4} – \arctan \frac{1}{2}} \right)\)     (M1)

\( = \frac{{\tan \frac{\pi }{4} – \tan \left( {\arctan \frac{1}{2}} \right)}}{{1 + \left( {\tan \frac{\pi }{4}} \right)\left( {\tan \left( {\arctan \frac{1}{2}} \right)} \right)}}\)     (M1)

 

Note:     The two M1s may be awarded for working in part (a).

\( = \frac{{1 – \frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\)     A1

\(y =  – \frac{1}{{\sqrt 3 }}\)     A1

substitution into \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)

\( = \frac{{4\sqrt 6 }}{9}\)     A1

Note: Accept \(\frac{{8\sqrt 3 }}{{9\sqrt 2 }}\) etc.

[5 marks]

 

Total [9 marks]

Examiners report

[N/A]

Question

A curve is defined by \(xy = {y^2} + 4\).

a.Show that there is no point where the tangent to the curve is horizontal.[4]

b.Find the coordinates of the points where the tangent to the curve is vertical.[4]

 
▶️Answer/Explanation

Markscheme

a.\(x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y = 2y\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1A1

a horizontal tangent occurs if \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) so \(y = 0\)     M1

we can see from the equation of the curve that this solution is not possible \((0 = 4)\) and so there is not a horizontal tangent     R1

[4 marks]

b.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{2y – x}}\) or equivalent with \(\frac{{{\text{d}}x}}{{{\text{d}}y}}\)

the tangent is vertical when \(2y = x\)     M1

substitute into the equation to give \(2{y^2} = {y^2} + 4\)     M1

\(y =  \pm 2\)     A1

coordinates are \((4,{\text{ }}2),{\text{ }}( – 4,{\text{ }} – 2)\)     A1

[4 marks]

Total [8 marks]

 

Question

A curve has equation \(3x – 2{y^2}{{\text{e}}^{x – 1}} = 2\).

a. Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of \(x\) and \(y\).[5]

b.Find the equations of the tangents to this curve at the points where the curve intersects the line \(x = 1\).[4]

 
▶️Answer/Explanation

Markscheme

attempt to differentiate implicitly     M1

a.\(3 – \left( {4y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2{y^2}} \right){{\text{e}}^{x – 1}} = 0\)    A1A1A1

Note: Award A1 for correctly differentiating each term.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3 \bullet {{\text{e}}^{1 – x}} – 2{y^2}}}{{4y}}\)    A1

Note: This final answer may be expressed in a number of different ways.

[5 marks]

b.

\(3 – 2{y^2} = 2 \Rightarrow {y^2} = \frac{1}{2} \Rightarrow y =  \pm \sqrt {\frac{1}{2}} \)    A1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3 – 2 \bullet \frac{1}{2}}}{{ \pm 4\sqrt {\frac{1}{2}} }} =  \pm \frac{{\sqrt 2 }}{2}\)    M1

at \(\left( {1,{\text{ }}\sqrt {\frac{1}{2}} } \right)\) the tangent is \(y – \sqrt {\frac{1}{2}}  = \frac{{\sqrt 2 }}{2}(x – 1)\) and     A1

at \(\left( {1,{\text{ }} – \sqrt {\frac{1}{2}} } \right)\) the tangent is \(y + \sqrt {\frac{1}{2}}  =  – \frac{{\sqrt 2 }}{2}(x – 1)\)     A1

Note: These equations simplify to \(y =  \pm \frac{{\sqrt 2 }}{2}x\).

Note: Award A0M1A1A0 if just the positive value of \(y\) is considered and just one tangent is found.

[4 marks]

Question

The folium of Descartes is a curve defined by the equation \({x^3} + {y^3} – 3xy = 0\), shown in the following diagram.

Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the \(y\)-axis.

▶️Answer/Explanation

Markscheme

\({x^3} + {y^3} – 3xy = 0\)

\(3{x^2} + 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} – 3x\frac{{{\text{d}}y}}{{{\text{d}}x}} – 3y = 0\)     M1A1

Note:     Differentiation wrt \(y\) is also acceptable.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3y – 3{x^2}}}{{3{y^2} – 3x}}{\text{ }}\left( { = \frac{{y – {x^2}}}{{{y^2} – x}}} \right)\)     (A1)

Note:     All following marks may be awarded if the denominator is correct, but the numerator incorrect.

\({y^2} – x = 0\)     M1

EITHER

\(x = {y^2}\)

\({y^6} + {y^3} – 3{y^3} = 0\)     M1A1

\({y^6} – 2{y^3} = 0\)

\({y^3}({y^3} – 2) = 0\)

\((y \ne 0)\therefore y = \sqrt[3]{2}\)     A1

\(x = {\left( {\sqrt[3]{2}} \right)^2}{\text{ }}\left( { = \sqrt[3]{4}} \right)\)     A1

OR

\({x^3} + xy – 3xy = 0\)     M1

\(x({x^2} – 2y) = 0\)

\(x \ne 0 \Rightarrow y = \frac{{{x^2}}}{2}\)     A1

\({y^2} = \frac{{{x^4}}}{4}\)

\(x = \frac{{{x^4}}}{4}\)

\(x({x^3} – 4) = 0\)

\((x \ne 0)\therefore x = \sqrt[3]{4}\)     A1

\(y = \frac{{{{\left( {\sqrt[3]{4}} \right)}^2}}}{2} = \sqrt[3]{2}\)     A1

[8 marks]

Examiners report

[N/A]
Scroll to Top