Home / IBDP Maths analysis and approaches Topic: SL 5.6 The product and quotient rule HL Paper 1

IBDP Maths analysis and approaches Topic: SL 5.6 The product and quotient rule HL Paper 1

Question

Consider the function \(f(x) = \frac{{\ln x}}{x}\) , \(0 < x < {{\text{e}}^2}\) .

(i)     Solve the equation \(f'(x) = 0\) .

(ii)     Hence show the graph of \(f\) has a local maximum.

(iii)     Write down the range of the function \(f\) .[5]

a.

Show that there is a point of inflexion on the graph and determine its coordinates.[5]

b.

Sketch the graph of \(y = f(x)\) , indicating clearly the asymptote, x-intercept and the local maximum.[3]

c.

Now consider the functions \(g(x) = \frac{{\ln \left| x \right|}}{x}\) and \(h(x) = \frac{{\ln \left| x \right|}}{{\left| x \right|}}\) , where \(0 < x < {{\text{e}}^2}\) .

(i)     Sketch the graph of \(y = g(x)\) .

(ii)     Write down the range of \(g\) .

(iii)     Find the values of \(x\) such that \(h(x) > g(x)\) .[6]

d.
Answer/Explanation

Markscheme

(i)     \(f'(x) = \frac{{x\frac{1}{x} – \ln x}}{{{x^2}}}\)     M1A1

\( = \frac{{1 – \ln x}}{{{x^2}}}\)

so \(f'(x) = 0\) when \(\ln x = 1\), i.e. \(x = {\text{e}}\)     A1

(ii)     \(f'(x) > 0\) when \(x < {\text{e}}\) and \(f'(x) < 0\) when \(x > {\text{e}}\)     R1

hence local maximum     AG

Note: Accept argument using correct second derivative.

(iii)     \(y \leqslant \frac{1}{{\text{e}}}\)     A1

[5 marks]

a.

\(f”(x) = \frac{{{x^2}\frac{{ – 1}}{x} – \left( {1 – \ln x} \right)2x}}{{{x^4}}}\)     M1

\( = \frac{{ – x – 2x + 2x\ln x}}{{{x^4}}}\)

\( = \frac{{ – 3 + 2\ln x}}{{{x^3}}}\)     A1

Note: May be seen in part (a).

\(f”(x) = 0\)     (M1)

\({ – 3 + 2\ln x = 0}\)

\(x = {{\text{e}}^{\frac{3}{2}}}\)

since \(f”(x) < 0\) when \(x < {{\text{e}}^{\frac{3}{2}}}\) and \(f”(x) > 0\) when \(x > {{\text{e}}^{\frac{3}{2}}}\)     R1

then point of inflexion \(\left( {{{\text{e}}^{\frac{3}{2}}},\frac{3}{{2{{\text{e}}^{\frac{3}{2}}}}}} \right)\)     A1

[5 marks]

b.

     A1A1A1

Note: Award A1 for the maximum and intercept, A1 for a vertical asymptote and A1 for shape (including turning concave up).

[3 marks]

c.

(i)
     A1A1

Note: Award A1 for each correct branch.

(ii) all real values     A1

(iii)
     (M1)(A1)

Note: Award (M1)(A1) for sketching the graph of h, ignoring any graph of g.

\( – {{\text{e}}^2} < x <  – 1\) (accept \(x < – 1\) )     A1

[6 marks]

d.

Question

Let \(f(x) = \sqrt {\frac{x}{{1 – x}}} ,{\text{ }}0 < x < 1\).

Show that \(f'(x) = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\) and deduce that f is an increasing function.[5]

a.

Show that the curve \(y = f(x)\) has one point of inflexion, and find its coordinates.[6]

b.

 Use the substitution \(x = {\sin ^2}\theta \) to show that \(\int {f(x){\text{d}}x}  = \arcsin \sqrt x  – \sqrt {x – {x^2}}  + c\) .[11]

c.
Answer/Explanation

Markscheme

EITHER

derivative of \(\frac{x}{{1 – x}}\) is \(\frac{{(1 – x) – x( – 1)}}{{{{(1 – x)}^2}}}\)     M1A1

\(f'(x) = \frac{1}{2}{\left( {\frac{x}{{1 – x}}} \right)^{ – \frac{1}{2}}}\frac{1}{{{{(1 – x)}^2}}}\)     M1A1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)     AG

\(f'(x) > 0\) (for all \(0 < x < 1\)) so the function is increasing     R1

OR

\(f(x) = \frac{{{x^{\frac{1}{2}}}}}{{{{(1 – x)}^{\frac{1}{2}}}}}\)

\(f'(x) = \frac{{{{(1 – x)}^{\frac{1}{2}}}\left( {\frac{1}{2}{x^{ – \frac{1}{2}}}} \right) – \frac{1}{2}{x^{\frac{1}{2}}}{{(1 – x)}^{ – \frac{1}{2}}}( – 1)}}{{1 – x}}\)     M1A1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{1}{2}}} + \frac{1}{2}{x^{\frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)     A1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}[1 – x + x]\)     M1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)     AG

\(f'(x) > 0\) (for all \(0 < x < 1\)) so the function is increasing     R1

[5 marks]

a.

\(f'(x) = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)

\( \Rightarrow f”(x) = -\frac{1}{4}{x^{ – \frac{3}{2}}}{(1 – x)^{ – \frac{3}{2}}} + \frac{3}{4}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{5}{2}}}\)     M1A1

\( = -\frac{1}{4}{x^{ – \frac{3}{2}}}{(1 – x)^{ – \frac{5}{2}}}[1 – 4x]\)

\(f”(x) = 0 \Rightarrow x = \frac{1}{4}\)     M1A1

\(f”(x)\) changes sign at \(x = \frac{1}{4}\) hence there is a point of inflexion     R1

\(x = \frac{1}{4} \Rightarrow y = \frac{1}{{\sqrt 3 }}\)     A1

the coordinates are \(\left( {\frac{1}{4},\frac{1}{{\sqrt 3 }}} \right)\)

[6 marks] 

b.

\(x = {\sin ^2}\theta  \Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}\theta }} = 2\sin \theta \cos \theta \)     M1A1

\(\int {\sqrt {\frac{x}{{1 – x}}} {\text{d}}x = \int {\sqrt {\frac{{{{\sin }^2}\theta }}{{1 – {{\sin }^2}\theta }}} 2\sin \theta \cos \theta {\text{d}}\theta } } \)     M1A1

\( = \int {2{{\sin }^2}\theta {\text{d}}\theta } \)     A1

\( = \int {1 – \cos 2\theta } {\text{d}}\theta \)     M1A1

\( = \theta  – \frac{1}{2}\sin 2\theta  + c\)     A1

\(\theta  = \arcsin \sqrt x \)     A1

\(\frac{1}{2}\sin 2\theta  = \sin \theta \cos \theta  = \sqrt x \sqrt {1 – x}  = \sqrt {x – {x^2}} \)     M1A1

hence \(\int {\sqrt {\frac{x}{{1 – x}}} {\text{d}}x = \arcsin \sqrt x }  – \sqrt {x – {x^2}}  + c\)     AG

[11 marks] 

c.

Question

Consider the curve defined by the equation \({x^2} + \sin y – xy = 0\) .

Find the gradient of the tangent to the curve at the point \((\pi ,{\text{ }}\pi )\) .[6]

a.

Hence, show that \(\tan \theta  = \frac{1}{{1 + 2\pi }}\), where \(\theta \) is the acute angle between the tangent to the curve at \((\pi ,{\text{ }}\pi )\) and the line y = x .[3]

b.
Answer/Explanation

Markscheme

attempt to differentiate implicitly     M1

\(2x + \cos y\frac{{{\text{d}}y}}{{{\text{d}}x}} – y – x\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     A1A1 

Note: A1 for differentiating \({x^2}\) and sin y ; A1 for differentiating xy.

substitute x and y by \(\pi \)     M1

\(2\pi  – \frac{{{\text{d}}y}}{{{\text{d}}x}} – \pi  – \pi \frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{\pi }{{1 + \pi }}\)     M1A1 

Note: M1 for attempt to make dy/dx the subject. This could be seen earlier.

[6 marks]

a.

\(\theta  = \frac{\pi }{4} – \arctan \frac{\pi }{{1 + \pi }}\) (or seen the other way)     M1

\(\tan \theta  = \tan \left( {\frac{\pi }{4} – \arctan \frac{\pi }{{1 + \pi }}} \right) = \frac{{1 – \frac{\pi }{{1 + \pi }}}}{{1 + \frac{\pi }{{1 + \pi }}}}\)     M1A1

\(\tan \theta  = \frac{1}{{1 + 2\pi }}\)     AG

[3 marks]

b.

Question

The curve C is given by \(y = \frac{{x\cos x}}{{x + \cos x}}\), for \(x \geqslant 0\).

Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{{\cos }^2}x – {x^2}\sin x}}{{{{(x + \cos x)}^2}}},{\text{ }}x \geqslant 0\).[4]

a.

Find the equation of the tangent to C at the point \(\left( {\frac{\pi }{2},0} \right)\).[3]

b.
Answer/Explanation

Markscheme

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(x + \cos x)(\cos x – x\sin x) – x\cos x(1 – \sin x)}}{{{{(x + \cos x)}^2}}}\)     M1A1A1

Note: Award M1 for attempt at differentiation of a quotient and a product condoning sign errors in the quotient formula and the trig differentiations, A1 for correct derivative of “u”, A1 for correct derivative of “v”.

 

\( = \frac{{x\cos x + {{\cos }^2}x – {x^2}\sin x – x\cos x\sin x – x\cos x + x\cos x\sin x}}{{{{(x + \cos x)}^2}}}\)     A1

\( = \frac{{{{\cos }^2}x – {x^2}\sin x}}{{{{(x + \cos x)}^2}}}\)     AG

[4 marks]

a.

the derivative has value –1     (A1)

the equation of the tangent line is \((y – 0) = ( – 1)\left( {x – \frac{\pi }{2}} \right)\left( {y = \frac{\pi }{2} – x} \right)\)     M1A1

[3 marks]

b.

Question

The function f is defined by \(f(x) = \frac{{2x – 1}}{{x + 2}}\), with domain \(D = \{ x: – 1 \leqslant x \leqslant 8\} \).

Express \(f(x)\) in the form \(A + \frac{B}{{x + 2}}\), where \(A\) and \(B \in \mathbb{Z}\).[2]

a.

Hence show that \(f'(x) > 0\) on D.[2]

b.

State the range of f.[2]

c.

(i)     Find an expression for \({f^{ – 1}}(x)\).

(ii)     Sketch the graph of \(y = f(x)\), showing the points of intersection with both axes.

(iii)     On the same diagram, sketch the graph of \(y = f'(x)\).[8]

d.

(i)     On a different diagram, sketch the graph of \(y = f(|x|)\) where \(x \in D\).

(ii)     Find all solutions of the equation \(f(|x|) = – \frac{1}{4}\).[7]

e.
Answer/Explanation

Markscheme

by division or otherwise

\(f(x) = 2 – \frac{5}{{x + 2}}\)     A1A1

[2 marks]

a.

\(f'(x) = \frac{5}{{{{(x + 2)}^2}}}\)     A1

> 0 as \({(x + 2)^2} > 0\) (on D)     R1AG

Note: Do not penalise candidates who use the original form of the function to compute its derivative.

 [2 marks]

b.

\(S = \left[ { – 3,\frac{3}{2}} \right]\)     A2

Note: Award A1A0 for the correct endpoints and an open interval.

[2 marks]

c.

(i)     EITHER

rearrange \(y = f(x)\) to make x the subject     M1

obtain one-line equation, e.g. \(2x – 1 = xy + 2y\)     A1

\(x = \frac{{2y + 1}}{{2 – y}}\)     A1

 

OR

interchange x and y     M1

obtain one-line equation, e.g. \(2y – 1 = xy + 2x\)     A1

\(y = \frac{{2x + 1}}{{2 – x}}\)     A1

 

THEN

\({f^{ – 1}}(x) = \frac{{2x + 1}}{{2 – x}}\)     A1

Note: Accept \(\frac{5}{{2 – x}} – 2\)

 

(ii), (iii)

     A1A1A1A1

[8 marks]

 

Note: Award A1 for correct shape of \(y = f(x)\).

Award A1 for x intercept \(\frac{1}{2}\) seen. Award A1 for y intercept \( – \frac{1}{2}\) seen.

Award A1 for the graph of \(y = {f^{ – 1}}(x)\) being the reflection of \(y = f(x)\) in the line \(y = x\). Candidates are not required to indicate the full domain, but \(y = f(x)\) should not be shown approaching \(x = – 2\). Candidates, in answering (iii), can FT on their sketch in (ii).

d.

(i)

     A1A1A1

Note: A1 for correct sketch \(x > 0\), A1 for symmetry, A1 for correct domain (from –1 to +8).

Note: Candidates can FT on their sketch in (d)(ii).

 

(ii)     attempt to solve \(f(x) = – \frac{1}{4}\)     (M1)

obtain \(x = \frac{2}{9}\)     A1

use of symmetry or valid algebraic approach     (M1)

obtain \(x = – \frac{2}{9}\)     A1

[7 marks]

e.

Question

The function \(f\) is given by \(f(x) = x{{\text{e}}^{ – x}}{\text{ }}(x \geqslant 0)\).

(i)     Find an expression for \(f'(x)\).

(ii)     Hence determine the coordinates of the point A, where \(f'(x) = 0\).[3]

a(i)(ii).

Find an expression for \(f”(x)\) and hence show the point A is a maximum.[3]

b.

Find the coordinates of B, the point of inflexion.[2]

c.

The graph of the function \(g\) is obtained from the graph of \(f\) by stretching it in the x-direction by a scale factor 2.

          (i)     Write down an expression for \(g(x)\).

          (ii)     State the coordinates of the maximum C of \(g\).

          (iii)     Determine the x-coordinates of D and E, the two points where \(f(x) = g(x)\).[5]

d.

Sketch the graphs of \(y = f(x)\) and \(y = g(x)\) on the same axes, showing clearly the points A, B, C, D and E.[4]

e.

Find an exact value for the area of the region bounded by the curve \(y = g(x)\), the x-axis and the line \(x = 1\).[3]

f.
Answer/Explanation

Markscheme

(i)     \(f'(x) = {{\text{e}}^{ – x}} – x{{\text{e}}^{ – x}}\)     M1A1

(ii)     \(f'(x) = 0 \Rightarrow x = 1\)

coordinates \(\left( {1,{\text{ }}{{\text{e}}^{ – 1}}} \right)\)     A1

[3 marks]

a(i)(ii).

\(f”(x) =  – {{\text{e}}^{ – x}} – {{\text{e}}^{ – x}} + x{{\text{e}}^{ – x}}{\text{ }}\left( { =  – {{\text{e}}^{ – x}}(2 – x)} \right)\)     A1

substituting \(x = 1\) into \(f”(x)\)     M1

\(f”(1){\text{ }}\left( { =  – {{\text{e}}^{ – 1}}} \right) < 0\) hence maximum     R1AG

[3 marks]

b.

\(f”(x) = 0{\text{ (}} \Rightarrow x = 2)\)     M1

coordinates \(\left( {2,{\text{ 2}}{{\text{e}}^{ – 2}}} \right)\)     A1

[2 marks]

c.

(i)     \(g(x) = \frac{x}{2}{{\text{e}}^{ – \frac{x}{2}}}\)     A1

(ii)     coordinates of maximum \(\left( {2,{\text{ }}{{\text{e}}^{ – 1}}} \right)\)     A1

(iii)     equating \(f(x) = g(x)\) and attempting to solve \(x{{\text{e}}^{ – x}} = \frac{x}{2}{{\text{e}}^{ – \frac{x}{2}}}\)

                    \( \Rightarrow x\left( {2{{\text{e}}^{\frac{x}{2}}} – {{\text{e}}^x}} \right) = 0\)     (A1)

                    \( \Rightarrow x = 0\)     A1

                    or \(2{{\text{e}}^{\frac{x}{2}}} = {{\text{e}}^x}\)

                    \( \Rightarrow {{\text{e}}^{\frac{x}{2}}} = 2\)

                    \( \Rightarrow x = 2\ln 2\)   \((\ln 4)\)     A1

Note:     Award first (A1) only if factorisation seen or if two correct

solutions are seen.

d.

 A4

Note:     Award A1 for shape of \(f\), including domain extending beyond \(x = 2\).

     Ignore any graph shown for \(x < 0\).

     Award A1 for A and B correctly identified.

     Award A1 for shape of \(g\), including domain extending beyond \(x = 2\).

     Ignore any graph shown for \(x < 0\). Allow follow through from \(f\).

     Award A1 for C, D and E correctly identified (D and E are interchangeable).

[4 marks]

e.

\(A = \int_0^1 {\frac{x}{2}{{\text{e}}^{ – \frac{x}{2}}}{\text{d}}x} \)     M1

\( = \left[ { – x{{\text{e}}^{ – \frac{x}{2}}}} \right]_0^1 – \int_0^1 { – {{\text{e}}^{ – \frac{x}{2}}}{\text{d}}x} \)     A1

Note:     Condone absence of limits or incorrect limits.

\( =  – {{\text{e}}^{ – \frac{1}{2}}} – \left[ {2{{\text{e}}^{ – \frac{x}{2}}}} \right]_0^1\)

\( =  – {{\text{e}}^{ – \frac{1}{2}}} – \left( {2{{\text{e}}^{ – \frac{1}{2}}} – 2} \right) = 2 – 3{{\text{e}}^{ – \frac{1}{2}}}\)     A1

[3 marks]

f.

Question

Consider the function \(f(x) = \frac{{\ln x}}{x},{\text{ }}x > 0\).

The sketch below shows the graph of \(y = {\text{ }}f(x)\) and its tangent at a point A.



Show that \(f'(x) = \frac{{1 – \ln x}}{{{x^2}}}\).[2]

a.

Find the coordinates of B, at which the curve reaches its maximum value.[3]

b.

Find the coordinates of C, the point of inflexion on the curve.[5]

c.

The graph of \(y = {\text{ }}f(x)\) crosses the \(x\)-axis at the point A.

Find the equation of the tangent to the graph of \(f\) at the point A.[4]

d.

The graph of \(y = {\text{ }}f(x)\) crosses the \(x\)-axis at the point A.

Find the area enclosed by the curve \(y = f(x)\), the tangent at A, and the line \(x = {\text{e}}\).[7]

e.
Answer/Explanation

Markscheme

\(f'(x) = \frac{{x \times \frac{1}{x} – \ln x}}{{{x^2}}}\)     M1A1

\( = \frac{{1 – \ln x}}{{{x^2}}}\)     AG

[2 marks]

a.

\(\frac{{1 – \ln x}}{{{x^2}}} = 0\) has solution \(x = {\text{e}}\)     M1A1

\(y = \frac{1}{{\text{e}}}\)     A1

hence maximum at the point \(\left( {{\text{e, }}\frac{1}{{\text{e}}}} \right)\)

[3 marks]

b.

\(f”(x) = \frac{{{x^2}\left( { – \frac{1}{x}} \right) – 2x(1 – \ln x)}}{{{x^4}}}\)     M1A1

\( = \frac{{2\ln x – 3}}{{{x^3}}}\)

Note:     The M1A1 should be awarded if the correct working appears in part (b).

point of inflexion where \(f”(x) = 0\)     M1

so \(x = {{\text{e}}^{\frac{3}{2}}},{\text{ }}y = \frac{3}{2}{{\text{e}}^{\frac{{ – 3}}{2}}}\)     A1A1

C has coordinates \(\left( {{{\text{e}}^{\frac{3}{2}}},{\text{ }}\frac{3}{2}{{\text{e}}^{\frac{{ – 3}}{2}}}} \right)\)

[5 marks]

c.

\(f(1) = 0\)     A1

\(f'(1) = 1\)     (A1)

\(y = x + c\)     (M1)

through (1, 0)

equation is \(y = x – 1\)     A1

[4 marks]

d.

METHOD 1

area \( = \int_1^{\text{e}} {x – 1 – \frac{{\ln x}}{x}{\text{d}}x} \)     M1A1A1

Note:     Award M1 for integration of difference between line and curve, A1 for correct limits, A1 for correct expressions in either order.

\(\int {\frac{{\ln x}}{x}{\text{d}}x = \frac{{{{(\ln x)}^2}}}{2}} ( + c)\)     (M1)A1

\(\int {(x – 1){\text{d}}x = \frac{{{x^2}}}{2} – x( + c)} \)     A1

\( = \left[ {\frac{1}{2}{x^2} – x – \frac{1}{2}{{(\ln x)}^2}} \right]_1^{\text{e}}\)

\( = \left( {\frac{1}{2}{{\text{e}}^2} – {\text{e}} – \frac{1}{2}} \right) – \left( {\frac{1}{2} – 1} \right)\)

\( = \frac{1}{2}{{\text{e}}^2} – {\text{e}}\)     A1

METHOD 2

area = area of triangle \( – \int_1^e {\frac{{\ln x}}{x}{\text{d}}x} \)     M1A1

Note:     A1 is for correct integral with limits and is dependent on the M1.

\(\int {\frac{{\ln x}}{x}{\text{d}}x = \frac{{{{(\ln x)}^2}}}{2}( + c)} \)     (M1)A1

area of triangle \( = \frac{1}{2}(e – 1)(e – 1)\)     M1A1

\(\frac{1}{2}(e – 1)(e – 1) – \left( {\frac{1}{2}} \right) = \frac{1}{2}{{\text{e}}^2} – {\text{e}}\)     A1

[7 marks]

e.

Question

The graph of the function \(f(x) = \frac{{x + 1}}{{{x^2} + 1}}\) is shown below.

The point (1, 1) is a point of inflexion. There are two other points of inflexion.

Find \(f'(x)\).[2]

a.

Hence find the \(x\)-coordinates of the points where the gradient of the graph of \(f\) is zero.[1]

b.

Find \(f”(x)\) expressing your answer in the form \(\frac{{p(x)}}{{{{({x^2} + 1)}^3}}}\), where \(p(x)\) is a polynomial of degree 3.[3]

c.

Find the \(x\)-coordinates of the other two points of inflexion.[4]

d.

Find the area of the shaded region. Express your answer in the form \(\frac{\pi }{a} – \ln \sqrt b \), where \(a\) and \(b\) are integers.[6]

e.
Answer/Explanation

Markscheme

(a)     \(f'(x) = \frac{{\left( {{x^2} + 1} \right) – 2x(x + 1)}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{ }}\left( { = \frac{{ – {x^2} – 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}} \right)\)     M1A1

[2 marks]

a.

\(\frac{{ – {x^2} – 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0\)

\(x =  – 1 \pm \sqrt 2 \)     A1

[1 mark]

b.

\(f”(x) = \frac{{( – 2x – 2){{\left( {{x^2} + 1} \right)}^2} – 2(2x)\left( {{x^2} + 1} \right)\left( { – {x^2} – 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}}\)     A1A1

Note:     Award A1 for \(( – 2x – 2){\left( {{x^2} + 1} \right)^2}\) or equivalent.

Note:     Award A1 for \( – 2(2x)\left( {{x^2} + 1} \right)\left( { – {x^2} – 2x + 1} \right)\) or equivalent.

\( = \frac{{( – 2x – 2)\left( {{x^2} + 1} \right) – 4x\left( { – {x^2} – 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}\)

\( = \frac{{2{x^3} + 6{x^2} – 6x – 2}}{{{{\left( {{x^2} + 1} \right)}^3}}}\)     A1

\(\left( { = \frac{{2\left( {{x^3} + 3{x^2} – 3x – 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}} \right)\)

[3 marks]

c.

recognition that \((x – 1)\) is a factor     (R1)

\((x – 1)\left( {{x^2} + bx + c} \right) = \left( {{x^3} + 3{x^2} – 3x – 1} \right)\)     M1

\( \Rightarrow {x^2} + 4x + 1 = 0\)     A1

\(x =  – 2 \pm \sqrt 3 \)     A1

Note:     Allow long division / synthetic division.

 

[4 marks]

d.

\(\int_{ – 1}^0 {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x} \)     M1

\(\int {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x = \int {\frac{x}{{{x^2} + 1}}{\text{d}}x + \int {\frac{1}{{{x^2} + 1}}{\text{d}}x} } } \)     M1

\( = \frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x)\)     A1A1

\( = \left[ {\frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x)} \right]_{ – 1}^0 = \frac{1}{2}\ln 1 + \arctan 0 – \frac{1}{2}\ln 2 – \arctan ( – 1)\)     M1

\( = \frac{\pi }{4} – \ln \sqrt 2 \)     A1

[6 marks]

e.

Question

A tranquilizer is injected into a muscle from which it enters the bloodstream.

The concentration \(C\) in \({\text{mg}}{{\text{l}}^{ – 1}}\), of tranquilizer in the bloodstream can be modelled by the function \(C(t) = \frac{{2t}}{{3 + {t^2}}},{\text{ }}t \ge 0\) where \(t\) is the number of minutes after the injection.

Find the maximum concentration of tranquilizer in the bloodstream.

Answer/Explanation

Markscheme

use of the quotient rule or the product rule     M1

\(C'(t) = \frac{{(3 + {t^2}) \times 2 – 2t \times 2t}}{{{{\left( {3 + {t^2}} \right)}^2}}}\;\;\;\left( { = \frac{{6 – 2{t^2}}}{{{{\left( {3 + {t^2}} \right)}^2}}}} \right)\;\;\;{\text{or}}\;\;\;\frac{2}{{3 + {t^2}}} – \frac{{4{t^2}}}{{{{\left( {3 + {t^2}} \right)}^2}}}\)     A1A1

Note:     Award A1 for a correct numerator and A1 for a correct denominator in the quotient rule, and A1 for each correct term in the product rule.

attempting to solve \(C'(t) = 0\;\;\;{\text{for }}t\)     (M1)

\(t =  \pm \sqrt 3 \;\;\;{\text{(minutes)}}\)     A1

\(C\left( {\sqrt 3 } \right) = \frac{{\sqrt 3 }}{3}\;\;\;\left( {{\text{mg}}{{\text{l}}^{ – 1}}} \right)\;\;\;{\text{or equivalent.}}\)     A1

[6 marks]

Question

Consider two functions \(f\) and \(g\) and their derivatives \(f’\) and \(g’\). The following table shows the values for the two functions and their derivatives at \(x = 1\), \(2\) and \(3\).

Given that \(p(x) = f(x)g(x)\) and \(h(x) = g \circ f(x)\), find

\(p'(3)\);[2]

a.

\(h'(2)\).[4]

b.
Answer/Explanation

Markscheme

\(p'(3) = f'(3)g(3) + g'(3)f(3)\)     (M1)

Note:     Award M1 if the derivative is in terms of \(x\) or \(3\).

\( = 2 \times 4 + 3 \times 1\)

\( = 11\)     A1

[2 marks]

a.

\(h'(x) = g’\left( {f(x)} \right)f'(x)\)     (M1)(A1)

\(h'(2) = g'(1)f'(2)\)     A1

\( = 4 \times 4\)

\( = 16\)     A1

[4 marks]

Total [6 marks]

b.

Question

Let \(y(x) = x{e^{3x}},{\text{ }}x \in \mathbb{R}\).

Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).[2]

a.

Prove by induction that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n – 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\) for \(n \in {\mathbb{Z}^ + }\).[7]

b.

Find the coordinates of any local maximum and minimum points on the graph of \(y(x)\).

Justify whether any such point is a maximum or a minimum.[5]

c.

Find the coordinates of any points of inflexion on the graph of \(y(x)\). Justify whether any such point is a point of inflexion.[5]

d.

Hence sketch the graph of \(y(x)\), indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.[2]

e.
Answer/Explanation

Markscheme

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1 \times {{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}} = ({{\text{e}}^{3x}} + 3x{{\text{e}}^{3x}})\)     M1A1

[2 marks]

a.

let \(P(n)\) be the statement \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n – 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\)

prove for \(n = 1\)     M1

\(LHS\) of \(P(1)\) is \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) which is \(1 \times {{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}}\) and \(RHS\) is \({3^0}{{\text{e}}^{3x}} + x{3^1}{{\text{e}}^{3x}}\)     R1

as \({\text{LHS}} = {\text{RHS, }}P(1)\) is true

assume \(P(k)\) is true and attempt to prove \(P(k + 1)\) is true     M1

assuming \(\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}} = k{3^{k – 1}}{{\text{e}}^{3x}} + x{3^k}{{\text{e}}^{3x}}\)

\(\frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}}} \right)\)     (M1)

\( = k{3^{k – 1}} \times 3{{\text{e}}^{3x}} + 1 \times {3^k}{{\text{e}}^{3x}} + x{3^k} \times 3{{\text{e}}^{3x}}\)     A1

\( = (k + 1){3^k}{{\text{e}}^{3x}} + x{3^{k + 1}}{{\text{e}}^{3x}}\;\;\;\)(as required)     A1

Note:     Can award the A marks independent of the M marks

since \(P(1)\) is true and \(P(k)\) is true \( \Rightarrow P(k + 1)\) is true

then (by \(PMI\)), \(P(n)\) is true \((\forall n \in {\mathbb{Z}^ + })\)     R1

Note: To gain last R1 at least four of the above marks must have been gained.

[7 marks]

b.

\({{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}} = 0 \Rightarrow 1 + 3x = 0 \Rightarrow x =  – \frac{1}{3}\)     M1A1

point is \(\left( { – \frac{1}{3},{\text{ }} – \frac{1}{{3{\text{e}}}}} \right)\)     A1

EITHER

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}}\)

when \(x =  – \frac{1}{3},{\text{ }}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} > 0\) therefore the point is a minimum     M1A1

OR

nature table shows point is a minimum     M1A1

[5 marks]

c.

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}}\)     A1

\(2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}} = 0 \Rightarrow 2 + 3x = 0 \Rightarrow x =  – \frac{2}{3}\)     M1A1

point is \(\left( { – \frac{2}{3},{\text{ }} – \frac{2}{{3{{\text{e}}^2}}}} \right)\)     A1

since the curvature does change (concave down to concave up) it is a point of inflection     R1

Note:     Allow \({3^{{\text{rd}}}}\) derivative is not zero at \( – \frac{2}{3}\)

[5 marks]

d.

(general shape including asymptote and through origin)     A1

showing minimum and point of inflection     A1

Note:     Only indication of position of answers to (c) and (d) required, not coordinates.

[2 marks]

Total [21 marks]

e.

Question

Consider the functions \(f(x) = \tan x,{\text{ }}0 \le \ x < \frac{\pi }{2}\) and \(g(x) = \frac{{x + 1}}{{x – 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).

Find an expression for \(g \circ f(x)\), stating its domain.[2]

a.

Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x – \cos x}}\).[2]

b.

Let \(y = g \circ f(x)\), find an exact value for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) at the point on the graph of \(y = g \circ f(x)\) where \(x = \frac{\pi }{6}\), expressing your answer in the form \(a + b\sqrt 3 ,{\text{ }}a,{\text{ }}b \in \mathbb{Z}\).[6]

c.

Show that the area bounded by the graph of \(y = g \circ f(x)\), the \(x\)-axis and the lines \(x = 0\) and \(x = \frac{\pi }{6}\) is \(\ln \left( {1 + \sqrt 3 } \right)\).[6]

d.
Answer/Explanation

Markscheme

\(g \circ f(x) = \frac{{\tan x + 1}}{{\tan x – 1}}\)     A1

\(x \ne \frac{\pi }{4},{\text{ }}0 \le x < \frac{\pi }{2}\)     A1

[2 marks]

a.

\(\frac{{\tan x + 1}}{{\tan x – 1}} = \frac{{\frac{{\sin x}}{{\cos x}} + 1}}{{\frac{{\sin x}}{{\cos x}} – 1}}\)     M1A1

\( = \frac{{\sin x + \cos x}}{{\sin x – \cos x}}\)     AG

[2 marks]

b.

METHOD 1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\sin x – \cos x)(\cos x – \sin x) – (\sin x + \cos x)(\cos x + \sin x)}}{{{{(\sin x – \cos x)}^2}}}\)     M1(A1)

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(2\sin x\cos x – {{\cos }^2}x – {{\sin }^2}x) – (2\sin x\cos x + {{\cos }^2}x + {{\sin }^2}x)}}{{{{\cos }^2}x + {{\sin }^2}x – 2\sin x\cos x}}\)

\( = \frac{{ – 2}}{{1 – \sin 2x}}\)

Substitute \(\frac{\pi }{6}\) into any formula for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1

\(\frac{{ – 2}}{{1 – \sin \frac{\pi }{3}}}\)

\( = \frac{{ – 2}}{{1 – \frac{{\sqrt 3 }}{2}}}\)     A1

\( = \frac{{ – 4}}{{2 – \sqrt 3 }}\)

\( = \frac{{ – 4}}{{2 – \sqrt 3 }}\left( {\frac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}} \right)\)     M1

\( = \frac{{ – 8 – 4\sqrt 3 }}{1} =  – 8 – 4\sqrt 3 \)     A1

METHOD 2

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\tan x – 1){{\sec }^2}x – (\tan x + 1){{\sec }^2}x}}{{{{(\tan x – 1)}^2}}}\)     M1A1

\( = \frac{{ – 2{{\sec }^2}x}}{{{{(\tan x – 1)}^2}}}\)     A1

\( = \frac{{ – 2{{\sec }^2}\frac{\pi }{6}}}{{{{\left( {\tan \frac{\pi }{6} – 1} \right)}^2}}} = \frac{{ – 2\left( {\frac{4}{3}} \right)}}{{{{\left( {\frac{1}{{\sqrt 3 }} – 1} \right)}^2}}} = \frac{{ – 8}}{{{{\left( {1 – \sqrt 3 } \right)}^2}}}\)     M1

Note: Award M1 for substitution \(\frac{\pi }{6}\).

\(\frac{{ – 8}}{{{{\left( {1 – \sqrt 3 } \right)}^2}}} = \frac{{ – 8}}{{\left( {4 – 2\sqrt 3 } \right)}}\frac{{\left( {4 + 2\sqrt 3 } \right)}}{{\left( {4 + 2\sqrt 3 } \right)}} =  – 8 – 4\sqrt 3 \)     M1A1

[6 marks]

c.

Area \(\left| {\int_0^{\frac{\pi }{6}} {\frac{{\sin x + \cos x}}{{\sin x – \cos x}}{\text{d}}x} } \right|\)     M1

\( = \left| {\left[ {\ln \left| {\sin x – \cos x} \right|} \right]_0^{\frac{\pi }{6}}} \right|\)     A1

Note:     Condone absence of limits and absence of modulus signs at this stage.

\( = \left| {\ln \left| {\sin \frac{\pi }{6} – \cos \frac{\pi }{6}} \right| – \ln \left| {\sin 0 – \cos 0} \right|} \right|\)     M1

\( = \left| {\ln \left| {\frac{1}{2} – \frac{{\sqrt 3 }}{2}} \right| – 0} \right|\)

\( = \left| {\ln \left( {\frac{{\sqrt 3  – 1}}{2}} \right)} \right|\)     A1

\( =  – \ln \left( {\frac{{\sqrt 3  – 1}}{2}} \right) = \ln \left( {\frac{2}{{\sqrt 3  – 1}}} \right)\)     A1

\( = \ln \left( {\frac{2}{{\sqrt 3  – 1}} \times \frac{{\sqrt 3  + 1}}{{\sqrt 3  + 1}}} \right)\)     M1

\( = \ln \left( {\sqrt 3  + 1} \right)\)     AG

[6 marks]

Total [16 marks]

d.

Question

Consider the function defined by \(f(x) = x\sqrt {1 – {x^2}} \) on the domain \( – 1 \le x \le 1\).

Show that \(f\) is an odd function.[2]

a.

Find \(f'(x)\).[3]

b.

Hence find the \(x\)-coordinates of any local maximum or minimum points.[3]

c.

Find the range of \(f\).[3]

d.

Sketch the graph of \(y = f(x)\) indicating clearly the coordinates of the \(x\)-intercepts and any local maximum or minimum points.[3]

e.

Find the area of the region enclosed by the graph of \(y = f(x)\) and the \(x\)-axis for \(x \ge 0\).[4]

f.

Show that \(\int_{ – 1}^1 {\left| {x\sqrt {1 – {x^2}} } \right|{\text{d}}x > \left| {\int_{ – 1}^1 {x\sqrt {1 – {x^2}} {\text{d}}x} } \right|} \).[2]

g.
Answer/Explanation

Markscheme

\(f( – x) = ( – x)\sqrt {1 – {{( – x)}^2}} \)     M1

\( =  – x\sqrt {1 – {x^2}} \)

\( =  – f(x)\)     R1

hence \(f\) is odd     AG

[2 marks]

a.

\(f'(x) = x \bullet \frac{1}{2}{(1 – {x^2})^{ – \frac{1}{2}}} \bullet  – 2x + {(1 – {x^2})^{\frac{1}{2}}}\)     M1A1A1

[3 marks]

b.

\(f'(x) = \sqrt {1 – {x^2}}  – \frac{{{x^2}}}{{\sqrt {1 – {x^2}} }}\;\;\;\left( { = \frac{{1 – 2{x^2}}}{{\sqrt {1 – {x^2}} }}} \right)\)     A1

Note:     This may be seen in part (b).

Note:     Do not allow FT from part (b).

\(f'(x) = 0 \Rightarrow 1 – 2{x^2} = 0\)     M1

\(x =  \pm \frac{1}{{\sqrt 2 }}\)     A1

[3 marks]

c.

\(y\)-coordinates of the Max Min Points are \(y =  \pm \frac{1}{2}\)     M1A1

so range of \(f(x)\) is \(\left[ { – \frac{1}{2},{\text{ }}\frac{1}{2}} \right]\)     A1

Note:     Allow FT from (c) if values of \(x\), within the domain, are used.

[3 marks]

d.

Shape: The graph of an odd function, on the given domain, s-shaped,

where the max(min) is the right(left) of \(0.5{\text{ }}( – 0.5)\)     A1

\(x\)-intercepts     A1

turning points     A1

[3 marks]

e.

\({\text{area}} = \int_0^1 {x\sqrt {1 – {x^2}} {\text{d}}x} \)     (M1)

attempt at “backwards chain rule” or substitution     M1

\( =  – \frac{1}{2}\int_0^1 {( – 2x)\sqrt {1 – {x^2}} {\text{d}}x} \)

Note:     Condone absence of limits for first two marks.

\( = \left[ {\frac{2}{3}{{(1 – {x^2})}^{\frac{3}{2}}} \bullet  – \frac{1}{2}} \right]_0^1\)     A1

\( = \left[ { – \frac{1}{3}{{(1 – {x^2})}^{\frac{3}{2}}}} \right]_0^1\)

\( = 0 – \left( { – \frac{1}{3}} \right) = \frac{1}{3}\)     A1

[4 marks]

f.

\(\int_{ – 1}^1 {\left| {x\sqrt {1 – {x^2}} } \right|{\text{d}}x > 0} \)     R1

\(\left| {\int_{ – 1}^1 {x\sqrt {1 – {x^2}} {\text{d}}x} } \right| = 0\)     R1

so \(\int_{ – 1}^1 {\left| {x\sqrt {1 – {x^2}} } \right|{\text{d}}x > \left| {\int_{ – 1}^1 {x\sqrt {1 – {x^2}} {\text{d}}x} } \right|} \)     AG

[2 marks]

Total [20 marks]

g.

Question

A curve is given by the equation \(y = \sin (\pi \cos x)\).

Find the coordinates of all the points on the curve for which \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0,{\text{ }}0 \leqslant x \leqslant \pi \).

Answer/Explanation

Markscheme

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \cos (\pi \cos x) \times \pi \sin x\)    M1A1

Note:     Award follow through marks below if their answer is a multiple of the correct answer.

considering either \(\sin x = 0\) or \(\cos (\pi \cos x) = 0\)     (M1)

\(x = 0,{\text{ }}\pi \)    A1

\(\pi \cos x = \frac{\pi }{2},{\text{ }} – \frac{\pi }{2}{\text{ }}\left( { \Rightarrow \cos x = \frac{1}{2}, – \frac{1}{2}} \right)\)    M1

Note:     Condone absence of \( – \frac{\pi }{2}\).

\( \Rightarrow x = \frac{\pi }{3},{\text{ }}\frac{{2\pi }}{3}\)

\((0,{\text{ }}0),{\text{ }}\left( {\frac{\pi }{3},{\text{ 1}}} \right),{\text{ (}}\pi {\text{, 0)}}\)    A1

\(\left( {\frac{{2\pi }}{3},{\text{ }} – 1} \right)\)    A1

[7 marks]

Question

The following graph shows the relation \(x = 3\cos 2y + 4,{\text{ }}0 \leqslant y \leqslant \pi \).

The curve is rotated 360° about the \(y\)-axis to form a volume of revolution.

A container with this shape is made with a solid base of diameter 14 cm . The container is filled with water at a rate of \({\text{2 c}}{{\text{m}}^{\text{3}}}\,{\text{mi}}{{\text{n}}^{ – 1}}\). At time \(t\) minutes, the water depth is \(h{\text{ cm, }}0 \leqslant h \leqslant \pi \) and the volume of water in the container is \(V{\text{ c}}{{\text{m}}^{\text{3}}}\).

Calculate the value of the volume generated.[8]

a.

(i)     Given that \(\frac{{{\text{d}}V}}{{{\text{d}}h}} = \pi {(3\cos 2h + 4)^2}\), find an expression for \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\).

(ii)     Find the value of \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) when \(h = \frac{\pi }{4}\).[4]

b.

(i)     Find \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}}\).

(ii)     Find the values of \(h\) for which \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}} = 0\).

(iii)     By making specific reference to the shape of the container, interpret \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) at the values of \(h\) found in part (c)(ii).[7]

c.
Answer/Explanation

Markscheme

use of \(\pi \int_a^b {{x^2}{\text{d}}y} \)     (M1)

Note:     Condone any or missing limits.

\(V = \pi \int_0^\pi  {{{(3\cos 2y + 4)}^2}{\text{d}}y} \)    (A1)

\( = \pi \int_0^\pi  {(9{{\cos }^2}2y + 24\cos 2y + 16){\text{d}}y} \)    A1

\(9{\cos ^2}2y = \frac{9}{2}(1 + \cos 4y)\)    (M1)

\( = \pi \left[ {\frac{{9y}}{2} + \frac{9}{8}\sin 4y + 12\sin 2y + 16y} \right]_0^\pi \)    M1A1

\( = \pi \left( {\frac{{9\pi }}{2} + 16\pi } \right)\)    (A1)

\( = \frac{{41{\pi ^2}}}{2}{\text{ (c}}{{\text{m}}^3})\)    A1

Note:     If the coefficient “\(\pi \)” is absent, or eg, “\(2\pi \)” is used, only M marks are available.

[8 marks]

a.

(i)     attempting to use \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{{\text{d}}V}}{{{\text{d}}t}} \times \frac{{{\text{d}}h}}{{{\text{d}}V}}\) with \(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 2\)     M1

\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{2}{{\pi {{(3\cos 2h + 4)}^2}}}\)    A1

(ii)     substituting \(h = \frac{\pi }{4}\) into \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\)     (M1)

\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{1}{{8\pi }}{\text{ (cm}}\,{\text{mi}}{{\text{n}}^{ – 1}})\)    A1

Note:     Do not allow FT marks for (b)(ii).

[4 marks]

b.

(i)     \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}} = \frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right) = \frac{{{\text{d}}h}}{{{\text{d}}t}} \times \frac{{\text{d}}}{{{\text{d}}h}}\left( {\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right)\)     (M1)

\( = \frac{2}{{\pi {{(3\cos 2h + 4)}^2}}} \times \frac{{24\sin 2h}}{{\pi {{(3\cos 2h + 4)}^3}}}\)    M1A1

Note:     Award M1 for attempting to find \(\frac{{\text{d}}}{{{\text{d}}h}}\left( {\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right)\).

\( = \frac{{48\sin 2h}}{{{\pi ^2}{{(3\cos 2h + 4)}^5}}}\)    A1

(ii)     \(\sin 2h = 0 \Rightarrow h = 0,{\text{ }}\frac{\pi }{2},{\text{ }}\pi \)     A1

Note:     Award A1 for \(\sin 2h = 0 \Rightarrow h = 0,{\text{ }}\frac{\pi }{2},{\text{ }}\pi \) from an incorrect \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}}\).

(iii)     METHOD 1

\(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) is a minimum at \(h = 0,{\text{ }}\pi \) and the container is widest at these values     R1

\(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) is a maximum at \(h = \frac{\pi }{2}\) and the container is narrowest at this value     R1

[7 marks]

c.

Question

Let \(y = {{\text{e}}^x}\sin x\).

Consider the function \(f\)  defined by \(f(x) = {{\text{e}}^x}\sin x,{\text{ }}0 \leqslant x \leqslant \pi \).

The curvature at any point \((x,{\text{ }}y)\) on a graph is defined as \(\kappa  = \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}\).

Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).[2]

a.

Show that \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^x}\cos x\).[2]

b.

Show that the function \(f\) has a local maximum value when \(x = \frac{{3\pi }}{4}\).[2]

c.

Find the \(x\)-coordinate of the point of inflexion of the graph of \(f\).[2]

d.

Sketch the graph of \(f\), clearly indicating the position of the local maximum point, the point of inflexion and the axes intercepts.[3]

e.

Find the area of the region enclosed by the graph of \(f\) and the \(x\)-axis.

The curvature at any point \((x,{\text{ }}y)\) on a graph is defined as \(\kappa  = \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}\).[6]

f.

Find the value of the curvature of the graph of \(f\) at the local maximum point.[3]

g.

Find the value \(\kappa \) for \(x = \frac{\pi }{2}\) and comment on its meaning with respect to the shape of the graph.[2]

h.
Answer/Explanation

Markscheme

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x{\text{ }}\left( { = {{\text{e}}^x}(\sin x + \cos x)} \right)\)    M1A1

[2 marks]

a.

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x – \sin x)\)    M1A1

\( = 2{{\text{e}}^x}\cos x\)    AG

[2 marks]

b.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^{\frac{{3\pi }}{4}}}\left( {\sin \frac{{3\pi }}{4} + \cos \frac{{3\pi }}{4}} \right) = 0\)    R1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} < 0\)    R1

hence maximum at \(x = \frac{{3\pi }}{4}\)     AG

[2 marks]

c.

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 0 \Rightarrow 2{{\text{e}}^x}\cos x = 0\)    M1

\( \Rightarrow x = \frac{\pi }{2}\)    A1

Note: Award M1A0 if extra zeros are seen.

[2 marks]

d.

correct shape and correct domain     A1

max at \(x = \frac{{3\pi }}{4}\), point of inflexion at \(x = \frac{\pi }{2}\)     A1

zeros at \(x = 0\) and \(x = \pi \)     A1

Note: Penalize incorrect domain with first A mark; allow FT from (d) on extra points of inflexion.

[3 marks]

e.

EITHER

\(\int_0^x {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi  – \int_0^\pi  {{{\text{e}}^x}\cos x{\text{d}}x} } \)    M1A1

\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi  – \left( {[{{\text{e}}^x}\cos x]_0^x + \int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x} } \right)} \)    A1

OR

\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [ – {{\text{e}}^x}\cos x]_0^\pi  + \int_0^\pi  {{{\text{e}}^x}\cos x{\text{d}}x} } \)    M1A1

\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [ – {{\text{e}}^x}\cos x]} _0^\pi  + \left( {[{{\text{e}}^x}\sin x]_0^\pi  – \int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x} } \right)\)    A1

THEN

\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}\left( {[{{\text{e}}^x}\sin x]_0^x – [{{\text{e}}^x}\cos x]_0^x} \right)} \)    M1A1

\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}({{\text{e}}^x} + 1)} \)    A1

[6 marks]

f.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)    (A1)

 \(\frac{{{d^2}y}}{{d{x^2}}} = 2{e^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} =  – \sqrt 2 {e^{\frac{{3\pi }}{4}}}\) (A1)

\(\kappa  = \frac{{\left| { – \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}} \right|}}{1} = \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}\)    A1

[3 marks]

g.

\(\kappa  = 0\)    A1

the graph is approximated by a straight line     R1

[2 marks]

h.

Question

Let \(y = {\text{si}}{{\text{n}}^2}\theta ,\,\,0 \leqslant \theta  \leqslant \pi \).

Find \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }}\)[2]

a.

Hence find the values of θ for which \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2y\).[5]

b.
Answer/Explanation

Markscheme

attempt at chain rule or product rule     (M1)

\(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta \)     A1

[2 marks]

a.

\(2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta  = 2{\text{si}}{{\text{n}}^2}\theta \)

sin θ = 0     (A1)

θ = 0, \(\pi \)     A1

obtaining cos θ = sin θ     (M1)

tan θ = 1     (M1)

\(\theta  = \frac{\pi }{4}\)     A1

[5 marks]

b.

Question

Let \(y = {\text{arccos}}\left( {\frac{x}{2}} \right)\)

Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).[2]

a.

Find \(\int_0^1 {{\text{arccos}}\left( {\frac{x}{2}} \right){\text{d}}x} \).[7]

b.
Answer/Explanation

Markscheme

\(y = {\text{arccos}}\left( {\frac{x}{2}} \right) \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \frac{1}{{2\sqrt {1 – {{\left( {\frac{x}{2}} \right)}^2}} }}\left( { =  – \frac{1}{{\sqrt {4 – {x^2}} }}} \right)\)    M1A1

Note: M1 is for use of the chain rule.

[2 marks]

a.

attempt at integration by parts     M1

\(u = {\text{arccos}}\left( {\frac{x}{2}} \right) \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} =  – \frac{1}{{\sqrt {4 – {x^2}} }}\)

\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 1 \Rightarrow v = x\)     (A1)

\(\int_0^1 {{\text{arccos}}\left( {\frac{x}{2}} \right){\text{d}}x}  = \left[ {x\,\,{\text{arccos}}\left( {\frac{x}{2}} \right)} \right]_0^1 + \int_0^1 {\frac{1}{{\sqrt {4 – {x^2}} }}} dx\)      A1

using integration by substitution or inspection      (M1)

\(\left[ {x\,\,{\text{arccos}}\left( {\frac{x}{2}} \right)} \right]_0^1 + \left[ { – {{\left( {4 – {x^2}} \right)}^{\frac{1}{2}}}} \right]_0^1\)      A1

Note: Award A1 for \({ – {{\left( {4 – {x^2}} \right)}^{\frac{1}{2}}}}\) or equivalent.

Note: Condone lack of limits to this point.

attempt to substitute limits into their integral     M1

\( = \frac{\pi }{3} – \sqrt 3  + 2\)     A1

[7 marks]

b.

Question

Consider the functions \(f,\,\,g,\) defined for \(x \in \mathbb{R}\), given by \(f\left( x \right) = {{\text{e}}^{ – x}}\,{\text{sin}}\,x\) and \(g\left( x \right) = {{\text{e}}^{ – x}}\,{\text{cos}}\,x\).

Find \(f’\left( x \right)\).[2]

a.i.

Find \(g’\left( x \right)\).[1]

a.ii.

Hence, or otherwise, find \(\int\limits_0^\pi  {{{\text{e}}^{ – x}}\,{\text{sin}}\,x\,{\text{d}}x} \).[4]

b.
Answer/Explanation

Markscheme

attempt at product rule      M1

\(f’\left( x \right) =  – {{\text{e}}^{ – x}}\,{\text{sin}}\,x + {{\text{e}}^{ – x}}\,{\text{cos}}\,x\)      A1

[2 marks]

a.i.

\(g’\left( x \right) =  – {{\text{e}}^{ – x}}\,{\text{cos}}\,x – {{\text{e}}^{ – x}}\,{\text{sin}}\,x\)      A1

[1 mark]

a.ii.

METHOD 1

Attempt to add \(f’\left( x \right)\) and \(g’\left( x \right)\)      (M1)

\(f’\left( x \right) + g’\left( x \right) =  – 2{{\text{e}}^{ – x}}\,{\text{sin}}\,x\)    A1

\(\int\limits_0^\pi  {{{\text{e}}^{ – x}}\,{\text{sin}}\,x\,{\text{d}}x}  = \left[ { – \frac{{{{\text{e}}^{ – x}}}}{2}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)} \right]_0^\pi \) (or equivalent)      A1

Note: Condone absence of limits.

\( = \frac{1}{2}\left( {1 + {{\text{e}}^{ – \pi }}} \right)\)    A1

METHOD 2

\(I = \int {{{\text{e}}^{ – x}}} \,{\text{sin}}\,x\,{\text{d}}x\)

\( =  – {{\text{e}}^{ – x}}\,{\text{cos}}\,x – \int {{{\text{e}}^{ – x}}} \,{\text{cos}}\,x\,{\text{d}}x\) OR \( =  – {{\text{e}}^{ – x}}\,{\text{sin}}\,x + \int {{{\text{e}}^{ – x}}} \,{\text{cos}}\,x\,{\text{d}}x\)     M1A1

\( =  – {{\text{e}}^{ – x}}\,{\text{sin}}\,x – {{\text{e}}^{ – x}}\,{\text{cos}}\,x – \int {{{\text{e}}^{ – x}}} \,{\text{sin}}\,x\,{\text{d}}x\)

\(I = \frac{1}{2}{{\text{e}}^{ – x}}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)\)     A1

\(\int_0^\pi  {{{\text{e}}^{ – x}}\,{\text{sin}}\,x\,{\text{d}}x = \frac{1}{2}\left( {1 + {{\text{e}}^{ – \pi }}} \right)} \)    A1

[4 marks]

b.
Scroll to Top