IBDP Math AI:Topic: AHL 2.7 Composite functions f∘g:IB style Questions HL Paper 1

Question

A function is defined by f (x)\( = 2 – \frac{12}{x+5}\) for −7 ≤ x ≤ 7, x ≠ −5.

a. Find the range of f . [3]

b. Find an for the inverse function f −1 (x).   The domain is not required. [3]

c. Write down the range of f −1 (x) . [1]

▶️Answer/Explanation

(a) ( f ( −7)  =8 ) and ( f (7) 1 = 1) r

ange is f (x ) ≤ 1, f (x ) ≥ 8

(b) interchanging x, y at any stage

\(y= 2 – \frac{12}{x+5}\0

\(\frac{12}{x+5}= 2-y\)

\(\frac{12}{(2-y)}= x+5\)

\frac{12}{(2-y)}- 5=x

\((f^{-1}(x)\frac{12}{2-x}-5)\)

\(= \frac{2+5x}{2-x}\)

(c) range is -7 ≤  f-1 (x) ≤  7, f-1 (x)≠ 5

Question

The function \(f(x) = In (\frac{1}{x-2})\) is defined for x>2, \(x\epsilon \mathbb{R}\)
(a) Find an expression for \(f^{-1}(x)\). You are not required to state a domain.
(b) Solve \(f(x)=f^{-1}(x)\).

▶️Answer/Explanation

Ans:

(a) \(y = In (\frac{1}{x-2})\)
an attempt to isolate x (or y if switched)
\(e^y = \frac{1}{x-2}\)
\(x – 2 = e^{-y}\)
\(x = e^{-y}+2\)
switching x and y (seen anywhere)
\(f^{-1}(x) = e^{-x}+2\)
(b) sketch of f(x) and \(f^{-1}(x)\)
x = 2.12  (2.12002…)

Question

The graph of y = f (x) for -4 ≤ x ≤ 6 is shown in the following diagram.

 
 (a)        Write down the value of

 (i)       f (2) ;

(ii)      ( f o f )(2) .                                                                                                                                                             [2]

 (b)        Let g(x) = \(\frac{1}{2} f (x) +1\) for -4 ≤ x ≤ 6 . On the axes above, sketch the graph of g .                   [3]

▶️Answer/Explanation

Ans:

(a) (i) f(2) = 6

(ii) (fof)2=− 2 [2 marks]

(b)

Question

The functions f and g are defined as:

\[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant 0\]

\[g(x) = \frac{1}{{x + 3}},{\text{ }}x \ne – 3.\]

(a)     Find \(h(x){\text{ where }}h(x) = g \circ f(x)\) .

(b)     State the domain of \({h^{ – 1}}(x)\) .

(c)     Find \({h^{ – 1}}(x)\) .

▶️Answer/Explanation

Markscheme

(a)     \(h(x) = g \circ f(x) = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}},{\text{ }}(x \geqslant 0)\)     (M1)A1

 (b)     \(0 < x \leqslant \frac{1}{4}\)     A1A1

Note: Award A1 for limits and A1 for correct inequality signs.

 (c)     \(y = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}}\)

\(y{{\text{e}}^{{x^2}}} + 3y = 1\)     M1

\({{\text{e}}^{{x^2}}} = \frac{{1 – 3y}}{y}\)     A1

\({x^2} = \ln \frac{{1 – 3y}}{y}\)     M1

\(x = \pm \sqrt {\ln \frac{{1 – 3y}}{y}} \)

\( \Rightarrow {h^{ – 1}}(x) = \sqrt {\ln \frac{{1 – 3x}}{x}} {\text{ }}\left( { = \sqrt {\ln \left( {\frac{1}{x} – 3} \right)} } \right)\)     A1

[8 marks]

Question

Let \(f(x) = \frac{4}{{x + 2}},{\text{ }}x \ne – 2{\text{ and }}g(x) = x – 1\).

If \(h = g \circ f\) , find

(a)     h(x) ;

(b)     \({h^{ – 1}}(x)\) , where \({h^{ – 1}}\) is the inverse of h.

▶️Answer/Explanation

Markscheme

(a)     \(h(x) = g\left( {\frac{4}{{x + 2}}} \right)\)     (M1)

\( = \frac{4}{{x + 2}} – 1\,\,\,\,\,\left( { = \frac{{2 – x}}{{2 + x}}} \right)\)     A1

 

(b)     METHOD 1

\(x = \frac{4}{{y + 2}} – 1\,\,\,\,\,\)(interchanging x and y)     M1

Attempting to solve for y     M1

\((y + 2)(x + 1) = 4\,\,\,\,\,\left( {y + 2 = \frac{4}{{x + 1}}} \right)\)     (A1)

\({h^{ – 1}}(x) = \frac{4}{{x + 1}} – 2\,\,\,\,\,(x \ne – 1)\)     A1     N1

METHOD 2

\(x = \frac{{2 – y}}{{2 + y}}\,\,\,\,\,\)(interchanging x and y)     M1

Attempting to solve for y     M1

\(xy + y = 2 – 2x\,\,\,\,\,\left( {y(x + 1) = 2(1 – x)} \right)\)     (A1)

\({h^{ – 1}}(x) = \frac{{2(1 – x)}}{{x + 1}}\,\,\,\,\,(x \ne – 1)\)     A1     N1

Note: In either METHOD 1 or METHOD 2 rearranging first and interchanging afterwards is equally acceptable.

 

[6 marks]

Scroll to Top