IBDP Maths analysis and approaches Topic: AHL 5.19 Maclaurin series for ex, sinx,cosx HL Paper 2

IB style Practice Questions

9. [Maximum mark: 8]
(a) Write down the first three terms of the binomial expansion of  \(\left ( 1+t \right )^{-1}\) in ascending powers of t. [1]
(b) By using the Maclaurin series for  \(\cos x\) and the result from part (a), show that the Maclaurin series for \(\sec x\)  up to and including the term in \( x^{4}\) \(+\frac{x^{2}}{2}+\frac{5x^{4}}{24} \) [4]

(c) By using the Maclaurin series for \(\arctan x\ )  and the result from part (b), find \(\lim_{x\rightarrow 0}\left ( \frac{\arctan2x}{\sec x-1} \right )\). [3]

▶️Answer/Explanation

Question

  1. Assuming the Maclaurin series for cos x and ln (1 + x) , show that the Maclaurin series  for cos (ln (1 + x)) is

                                              \(1-\frac{1}{2}x^2+\frac{1}{2}x^{3}-\frac{5}{12}x^{4}+..\) [4]

  2. By differentiating the series in part (a), show that the Maclaurin series for sin (ln (1 + x))

    is x \(-\frac{1}{2}x^2+\frac{1}{6}x^{3}+…\)[4]

  3. Hence determine the Maclaurin series for tan (ln (1 + x)) as far as the term in x3 . [5]

▶️Answer/Explanation

Ans: 

(a)

METHOD 1

attempts to substitute ln(1+x)=x – \(\frac{1}{2}x^{2}+\frac{1}{3}x^{4}-\frac{1}{4}x^{4}\)+.. into

cosx = 1 -\(\frac{1}{2}x^{2}+ \frac{1}{24}x^{4}\)….

\(cos(ln(1+x)) =1-\frac{1}{2}(x-\frac{1}{2}x^2+\frac{1}{3}x^3+..)+\frac{1}{24}(x+..)^4+..\)

attempts to expand the RHS up to and including the 4term

= \(1 -\frac{1}{2}(x^{2}-x^{3}+ \frac{1}{2}x^{4}\)+ \(\frac{2}{3}x^{4}+…)\)

\(= 1-\frac{1}{2}x^{2}+ \frac{1}{2}^{3}-\frac{5}{12}^{4}+…\)

METHOD 2

attempts to substitute \(ln(1+x)\) into cosx= 1-\(\frac{1}{2}x^{2}+ \frac{1}{24}x^{4}\)

\(cos(ln(1+x))= 1-\frac{1}{2}(ln(1+x))^{2}+\frac{1}{24}(ln(1+x))^{4}\)..

attempts to find the Maclaurin series for \((ln(1+x))^2) up to and including the x4 term

\((ln(1+x))^{2}=x^{2}-x^{3}+ \frac{11}{12}x^{4}\)…..

\((ln(1+x))^{2}= x^{4}\) ….

\(= 1-\frac{1}{2}x^{2}+ \frac{1}{2}x^{3}- \frac{5}{12}^{4}\)+….

(b)

\(-sin (ln(1+x))\times \frac{1}{1+x}\)= -x+\(\frac{3}{2}x^{2}-\frac{5}{3}x^{3}+..\)

\(sin (ln(1+x))=-(1+x)(-x+\frac{3}{2}x^{2}-\frac{5}{3}x^{3}+…)\)

attempts to expand the RHS up to and including the \(x^3\) term

\(= x – \frac{3}{2}x^{2}+\frac{5}{3}x^{3}+\frac{-3}{2}x^{3}\)+…\)

\(= x – \frac{1}{2}x^{2}+ \frac{1}{6}x^{3}+…\)

(c)

METHOD 1

let  tan (ln(1+x))=a +\(a_{1}+ a_{2}x^{2}+a_{3}x^{3}\)+…. 

uses \(tan (ln(1+x))= \frac{sin(ln(1+x))}{cos(ln(1+x))}\)to form

 \((x-\frac{1}{2}x^{2}+ \frac{1}{6}x^{3}+….)\)\((1-\frac{1}{2}x^{2}+ \frac{1}{2}x^{3}+)^{-1}\)

\((1-\frac{1}{2}x^{2}+ \frac{1}{2}x^{3}+)^{-1}=1+\frac{1}{2}x^2-\frac{1}{2}x^3+..\)

attempts to expand the RHS up to and including the \(x^3\) term

 \((x-\frac{1}{2}x^{2}+ \frac{1}{6}x^{3}+….)\)(\(1+\frac{1}{2}x^2-\frac{1}{2}x^3+..\))

\(= x+\frac{1}{2}x^{2}-\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+…\)

\(= x- \frac{1}{2}x^{2}+\frac{2}{3}x^{3}+….\)

METHOD 2

A Maclaurin series is a function that has expansion series that gives the sum of derivatives of that function. The Maclaurin series of a function \(f(x)\) up to order n may be found using Series \([f, {x, 0, n}]\).

It is a special case of Taylor series when x = 0. The Maclaurin series is given by

\[\large f(x)=f(x_{0})+{f}'(x_{0})(x-x_{0})+\frac{{f}”(x_{0})}{2!}(x-x_{0})^{2}+\frac{{f}”'(x_{0})}{3!}(x-x_{0})^{3}+…..\]

The Maclaurin series formula is

\[\large f(x)=\sum_{n=0}^{\infty}\frac{f^{n}(x_{0})}{n!}(x-x_{0})\]

Where,
f(xo), f’(xo), f’‘(xo)……. are the successive differentials when xo = 0.

FunctionMaclaurin Series
\(e^{x}\)\(\sum_{k=0}^{\infty}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+…..\)
\(sin\;x\)\(\sum_{k=0}^{\infty}(-1)^{2}=\frac{x^{2k+1}}{(2k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+…..\)
\(cos\;x\)\(\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n) !}=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\frac{x^{6}}{6 !}+\ldots\)
\(\frac{1}{1-x}\)\(\sum_{k=0}^{\infty}x^{k}=1+x+x^{2}+x^{3}+….(if-1<x<1)\)
\(ln(1+x)\)\(\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots\)

Maclaurin series 

Approximating cos(x) with a Maclaurin series (which is like a Taylor polynomial centered at x=0 with infinitely many terms). It turns out that this series is exactly the same as the function itself!

Question

Expanding \(e^{x}\) : Find the Maclaurin Series expansion of \(f(x)=e^{x}\)

▶️Answer/Explanation

Solution:

Recalling that the derivative of the exponential function is \({f}'(x)=e^{x}\) In fact, all the derivatives are \(e^{x}\) .

\({f}'(0)=e^{0}=1\) \({f}”(0)=e^{0}=1\) \({f}”'(0)=e^{0}=1\)

We see that all the derivatives, when evaluated at x = 0, give us the value 1.

Also, f(0)=1, so we can conclude the Maclaurin Series expansion will be simply:

\(e^{x}\approx 1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+\frac{1}{24}x^{4}+\frac{1}{120}x^{5}+….\)
Scroll to Top