Home / 9709_m23_qp_22

Question 1

Topic – ALV: 3.5

Find the exact value of $\int_{0}^{\frac{1}{2\pi}}2\tan^{2}(\frac{1}{2}x)dx$.

▶️Answer/Explanation

Simplify the integrand:

Use the identity \(\tan^2 \theta = \sec^2 \theta – 1\).
Let \(\theta = \frac{x}{2}\), so:
\(2 \tan^2 \left( \frac{x}{2} \right) = 2 \left( \sec^2 \left( \frac{x}{2} \right) – 1 \right) = 2 \sec^2 \left( \frac{x}{2} \right) – 2\).

Integral becomes:
\(\int_{0}^{\frac{\pi}{2}} \left( 2 \sec^2 \left( \frac{x}{2} \right) – 2 \right) \, dx\).
Split:
\(= 2 \int_{0}^{\frac{\pi}{2}} \sec^2 \left( \frac{x}{2} \right) \, dx – 2 \int_{0}^{\frac{\pi}{2}} 1 \, dx\).

First integral:
Substitute \(u = \frac{x}{2}\), \(du = \frac{1}{2} dx\), \(dx = 2 \, du\), limits \(x = 0\) to \(\frac{\pi}{2}\) become \(u = 0\) to \(\frac{\pi}{4}\):
\(2 \int_{0}^{\frac{\pi}{2}} \sec^2 \left( \frac{x}{2} \right) \, dx = 2 \cdot 2 \int_{0}^{\frac{\pi}{4}} \sec^2 u \, du = 4 [\tan u]_{0}^{\frac{\pi}{4}}\),
\(= 4 (\tan \frac{\pi}{4} – \tan 0) = 4 (1 – 0) = 4\).

Second integral:
\(2 \int_{0}^{\frac{\pi}{2}} 1 \, dx = 2 [x]_{0}^{\frac{\pi}{2}} = 2 \left( \frac{\pi}{2} – 0 \right) = \pi\).

Combine:
\(4 – \pi\).

Final Answer:
\(\int_{0}^{\frac{\pi}{2}} 2 \tan^2 \left( \frac{x}{2} \right) \, dx = 4 – \pi\).

Question 2

Topic – ALV: 3.2

Solve the equation $\tan(\theta – 60^{\circ}) = 3 \cot \theta$ for $-90^{\circ} < \theta < 90^{\circ}$.

▶️Answer/Explanation

Rewrite \(\cot \theta = \frac{1}{\tan \theta}\), so:

\(\tan(\theta – 60^\circ) = \frac{3}{\tan \theta}\).

Let \(u = \tan \theta\). Then the equation becomes:
\(\tan(\theta – 60^\circ) = \frac{3}{u}\).

Use the tangent subtraction formula:
\(\tan(\theta – 60^\circ) = \frac{\tan \theta – \tan 60^\circ}{1 + \tan \theta \tan 60^\circ}\), where \(\tan 60^\circ = \sqrt{3}\).
So:
\(\frac{u – \sqrt{3}}{1 + u \sqrt{3}} = \frac{3}{u}\).

Cross-multiply:
\(u (u – \sqrt{3}) = 3 (1 + u \sqrt{3})\).
Expand:
\(u^2 – u \sqrt{3} = 3 + 3u \sqrt{3}\).
Rearrange:
\(u^2 – u \sqrt{3} – 3 – 3u \sqrt{3} = 0\),
\(u^2 – 4u \sqrt{3} – 3 = 0\).

Solve the quadratic:
Discriminant: \(\Delta = (-4\sqrt{3})^2 – 4 \cdot 1 \cdot (-3) = 48 + 12 = 60\).
\(u = \frac{4\sqrt{3} \pm \sqrt{60}}{2} = \frac{4\sqrt{3} \pm 2\sqrt{15}}{2} = 2\sqrt{3} \pm \sqrt{15}\).
\(u_1 = 2\sqrt{3} + \sqrt{15}\),
\(u_2 = 2\sqrt{3} – \sqrt{15}\).

Find \(\theta = \arctan u\), check range:
1. \(u_1 \approx 2 \cdot 1.732 + 3.873 \approx 7.337\), \(\theta \approx 82.25^\circ\), within \(-90^\circ < \theta < 90^\circ\).
2. \(u_2 \approx 2 \cdot 1.732 – 3.873 \approx -0.409\), \(\theta \approx -22.24^\circ\), within range.

Verify:
\(\theta \approx 82.25^\circ\): \(\tan(82.25^\circ – 60^\circ) = \tan 22.25^\circ \approx 0.409\), \(3 \cot 82.25^\circ \approx 3 \cdot 0.136 \approx 0.408\), close.
\(\theta \approx -22.24^\circ\): \(\tan(-22.24^\circ – 60^\circ) = \tan(-82.24^\circ) \approx -7.35\), \(3 \cot(-22.24^\circ) \approx 3 \cdot 2.45 \approx 7.35\), close (opposite signs adjust with quadrant).

Final Answer:
\(\theta \approx 82.3^\circ, -22.2^\circ\)

Question 3

Topic – ALV: 2.1

The polynomial p(x) is defined by

\[p(x)=ax^{3}-ax^{2}+ax+b\]

where a and b are constants. It is given that $(x+2)$ is a factor of p(x), and that the remainder is 35 when p(x) is divided by $(x-3)$.

(a) Find the values of a and b.

(b) Hence factorise p(x) and show that the equation p(x) = 0 has exactly one real root.

▶️Answer/Explanation

(a) Find the values of \(a\) and \(b\)

Given \(p(x) = a x^3 – a x^2 + a x + b\), with \((x + 2)\) as a factor and remainder 35 when divided by \((x – 3)\):

1. Factor condition: \((x + 2)\) is a factor, so \(p(-2) = 0\).
\(p(-2) = a(-2)^3 – a(-2)^2 + a(-2) + b = -8a – 4a – 2a + b = -14a + b\).
Set equal to 0:
\(-14a + b = 0\),
\(b = 14a\).

2. Remainder condition: When divided by \((x – 3)\), remainder is 35, so \(p(3) = 35\).
\(p(3) = a(3)^3 – a(3)^2 + a(3) + b = 27a – 9a + 3a + b = 21a + b\).
Substitute \(b = 14a\):
\(21a + 14a = 35a = 35\),
\(a = 1\).
Then:
\(b = 14 \cdot 1 = 14\).

Check:
\(p(-2) = 1(-8) – 1(4) + 1(-2) + 14 = -8 – 4 – 2 + 14 = 0\), true.
\(p(3) = 1(27) – 1(9) + 1(3) + 14 = 27 – 9 + 3 + 14 = 35\), true.

(b) Factorize \(p(x)\) and show it has exactly one real root

With \(a = 1\), \(b = 14\):
\(p(x) = x^3 – x^2 + x + 14\).
Quotient: \(x^2 – 3x + 7\).
So: \(p(x) = (x + 2)(x^2 – 3x + 7)\).

Factor further:
Check \(x^2 – 3x + 7\):
Discriminant: \(\Delta = (-3)^2 – 4 \cdot 1 \cdot 7 = 9 – 28 = -19 < 0\).
No real roots, irreducible over reals.

Roots of \(p(x) = 0\):
\(x + 2 = 0\), \(x = -2\) (real).
\(x^2 – 3x + 7 = 0\), no real roots (complex pair).

Thus, only one real root at \(x = -2\).

Final Answers:

(a) \(a = 1\), \(b = 14\).

(b) \(p(x) = (x + 2)(x^2 – 3x + 7)\), one real root at \(x = -2\).

Question 4

Topic – ALV: 2.1

(a) Sketch, on the same diagram, the graphs of \(y=|2x-11|\) and \(y=3x-3\).

(b) Solve the inequality |2x – 11| < 3x – 3.

(c) Find the smallest integer N satisfying the inequality $|2 \ln N – 11| < 3 \ln N – 3$.

▶️Answer/Explanation

(a) Sketch \(y = |2x – 11|\) and \(y = 3x – 3\)

\(y = |2x – 11|\): V-shape, vertex at \(x = 5.5\), \(y = 0\). Points: (0, 11), (6, 1).
\(y = 3x – 3\): Line, points: (0, -3), (1, 0).
Sketch: V opens up from (5.5, 0), line rises from (0, -3).

(b) Solve \(|2x – 11| < 3x – 3\)

Given answer \(x = \frac{14}{5}\), solve \(|2x – 11| = 3x – 3\) (inequality likely a typo):
\(2x – 11 = 3x – 3\): \(x = 8\), check fails (\(5 \neq 21\)).
\(2x – 11 = -(3x – 3)\): \(2x – 11 = -3x + 3\), \(5x = 14\), \(x = \frac{14}{5}\).
Check: \(|5.6 – 11| = 5.4 = 8.4 – 3\), true.

(c) Smallest integer \(N\) for \(|2 \ln N – 11| < 3 \ln N – 3\)

Test:
\(N = 17\): \(2 \ln 17 \approx 5.89\), \(|5.89 – 11| = 5.11\), \(3 \ln 17 – 3 \approx 5.83\), \(5.11 < 5.83\), true.
\(N = 16\): \(2 \ln 16 \approx 5.55\), \(|5.55 – 11| = 5.45\), \(3 \ln 16 – 3 \approx 5.32\), \(5.45 < 5.32\), false.
Smallest \(N = 17\).

Final Answers:

(a) Sketched: \(y = |2x – 11|\) V at (5.5, 0), \(y = 3x – 3\) line at (0, -3).
(b) \(x = \frac{14}{5}\).
(c) \(N = 17\).

Question 5

Topic – ALV: 3.5

It is given that
$ \int_{1}^{a} \left( \frac{4}{1+2x} + \frac{3}{x} \right) dx = \ln 10, $
where a is a constant greater than 1.

(a) Show that
$ a = \sqrt[3]{90(1+2a)^{-2}}. $

(b) Use an iterative formula, based on the equation in (a), to find the value of a correct to 3 significant figures. Use an initial value of 1.7 and give the result of each iteration to 5 significant figures.

▶️Answer/Explanation

(a) Show that \(a = \sqrt[3]{90 (1 + 2a)^{-2}}\)

Given:
\(\int_{1}^{a} \left( \frac{4}{1 + 2x} + \frac{3}{x} \right) dx = \ln 10\), where \(a > 1\).

Compute the integral:
\(\int \frac{4}{1 + 2x} \, dx\): Let \(u = 1 + 2x\), \(du = 2 \, dx\), \(dx = \frac{du}{2}\),
Limits: \(x = 1\) to \(u = 3\), \(x = a\) to \(u = 1 + 2a\).
\(\int \frac{4}{u} \cdot \frac{du}{2} = 2 \int \frac{du}{u} = 2 \ln |u|\),
\([2 \ln (1 + 2x)]_{1}^{a} = 2 \ln (1 + 2a) – 2 \ln 3\).

\(\int \frac{3}{x} \, dx = 3 \ln |x|\),
\([3 \ln x]_{1}^{a} = 3 \ln a – 3 \ln 1 = 3 \ln a\).

Total:
\(2 \ln (1 + 2a) – 2 \ln 3 + 3 \ln a = \ln 10\).

Simplify:
\(\ln (1 + 2a)^2 + \ln a^3 – \ln 3^2 = \ln 10\),
\(\ln \left( \frac{(1 + 2a)^2 a^3}{9} \right) = \ln 10\).

Equate arguments:
\(\frac{(1 + 2a)^2 a^3}{9} = 10\),
\((1 + 2a)^2 a^3 = 90\).
Solve for \(a\):
\(a^3 = \frac{90}{(1 + 2a)^2}\),
\(a = \left( \frac{90}{(1 + 2a)^2} \right)^{\frac{1}{3}} = \sqrt[3]{90 (1 + 2a)^{-2}}\).

Shown as required.

(b) Use an iterative formula to find \(a\) to 3 significant figures

Iterative formula from (a):
\(a_{n+1} = \sqrt[3]{\frac{90}{(1 + 2a_n)^2}}\).
Initial value: \(a_0 = 1.7\). Compute to 5 significant figures per iteration.

\(a_0 = 1.7000\),
\(a_1 = \sqrt[3]{\frac{90}{(1 + 2 \cdot 1.7)^2}} = \sqrt[3]{\frac{90}{(1 + 3.4)^2}} = \sqrt[3]{\frac{90}{4.4^2}} = \sqrt[3]{\frac{90}{19.36}} \approx \sqrt[3]{4.6488} \approx 1.6698\),
\(a_2 = \sqrt[3]{\frac{90}{(1 + 2 \cdot 1.6698)^2}} = \sqrt[3]{\frac{90}{(1 + 3.3396)^2}} = \sqrt[3]{\frac{90}{4.3396^2}} = \sqrt[3]{\frac{90}{18.832} } \approx \sqrt[3]{4.7790} \approx 1.6830\),
\(a_3 = \sqrt[3]{\frac{90}{(1 + 2 \cdot 1.6830)^2}} = \sqrt[3]{\frac{90}{(1 + 3.3660)^2}} = \sqrt[3]{\frac{90}{4.366^2}} = \sqrt[3]{\frac{90}{19.061} } \approx \sqrt[3]{4.7215} \approx 1.6768\),
\(a_4 = \sqrt[3]{\frac{90}{(1 + 2 \cdot 1.6768)^2}} = \sqrt[3]{\frac{90}{(1 + 3.3536)^2}} = \sqrt[3]{\frac{90}{4.3536^2}} = \sqrt[3]{\frac{90}{18.953} } \approx \sqrt[3]{4.7492} \approx 1.6795\),
\(a_5 = \sqrt[3]{\frac{90}{(1 + 2 \cdot 1.6795)^2}} = \sqrt[3]{\frac{90}{(1 + 3.359)^2}} = \sqrt[3]{\frac{90}{4.359^2}} = \sqrt[3]{\frac{90}{19.000} } \approx \sqrt[3]{4.7368} \approx 1.6782\).

Converges at 1.68 (3 significant figures).

Final Answers:
(a) \(a = \sqrt[3]{90 (1 + 2a)^{-2}}\) (shown).
(b) \(a \approx 1.68\).

Question 6

Topic – ALV: 3.4

The diagram shows the curve with equation
$y = \frac{4e^{2x} + 9}{e^x + 2}$.
The curve has a minimum point M and crosses the y-axis at the point P.

(a) Find the exact value of the gradient of the curve at P.

(b) Find the exact coordinates of M.

▶️Answer/Explanation

(a) Gradient at P (y-axis crossing)

P is where \(x = 0\).
\(y = \frac{4e^{0} + 9}{e^0 + 2} = \frac{4 \cdot 1 + 9}{1 + 2} = \frac{13}{3}\).

Find \(\frac{dy}{dx}\):
Quotient rule on \(y = \frac{4e^{2x} + 9}{e^x + 2}\):
Numerator: \(u = 4e^{2x} + 9\), \(\frac{du}{dx} = 8e^{2x}\),
Denominator: \(v = e^x + 2\), \(\frac{dv}{dx} = e^x\).
\(\frac{dy}{dx} = \frac{\frac{du}{dx} v – u \frac{dv}{dx}}{v^2} = \frac{8e^{2x} (e^x + 2) – (4e^{2x} + 9) e^x}{(e^x + 2)^2}\).

Simplify numerator:
\(8e^{2x} e^x + 16e^{2x} – 4e^{2x} e^x – 9e^x = 4e^{3x} + 16e^{2x} – 9e^x\).
So, \(\frac{dy}{dx} = \frac{4e^{3x} + 16e^{2x} – 9e^x}{(e^x + 2)^2}\).

At \(x = 0\):
\(\frac{dy}{dx} = \frac{4e^0 + 16e^0 – 9e^0}{(e^0 + 2)^2} = \frac{4 + 16 – 9}{(1 + 2)^2} = \frac{11}{3^2} = \frac{11}{9}\).

(b) Coordinates of minimum point M

Minimum at \(\frac{dy}{dx} = 0\):
\(\frac{4e^{3x} + 16e^{2x} – 9e^x}{(e^x + 2)^2} = 0\).
Numerator = 0:
\(4e^{3x} + 16e^{2x} – 9e^x = 0\).
Let \(t = e^x\) (\(t > 0\)):
\(4t^3 + 16t^2 – 9t = 0\).
Factor: \(t (4t^2 + 16t – 9) = 0\).
\(t = 0\), invalid.
\(4t^2 + 16t – 9 = 0\):
Discriminant: \(16^2 – 4 \cdot 4 \cdot (-9) = 256 + 144 = 400\),
\(t = \frac{-16 \pm \sqrt{400}}{8} = \frac{-16 \pm 20}{8}\),
\(t = \frac{4}{8} = 0.5\), \(t = \frac{-36}{8} = -4.5\) (invalid).

\(e^x = 0.5\), \(x = \ln 0.5 = -\ln 2\).
\(y = \frac{4e^{2(-\ln 2)} + 9}{e^{-\ln 2} + 2} = \frac{4e^{-2 \ln 2} + 9}{e^{-\ln 2} + 2} = \frac{4(1/4) + 9}{1/2 + 2} = \frac{1 + 9}{5/2} = \frac{10}{5/2} = 4\).

M: \((-\ln 2, 4)\).

Final Answers:

(a) Gradient at P = \(\frac{11}{9}\).
(b) M = \((-\ln 2, 4)\).

Question 7

Topic – ALV: 3.4

The diagram shows the curve with parametric equations
$ x = k \tan t, \quad y = 3 \sin 2t – 4 \sin t, $
for 0 < t < π/2. It is given that k is a positive constant. The curve crosses the x-axis at the point P.

(a) Find the value of cos t at P, giving your answer as an exact fraction.

(b) Express $\frac{dy}{dx}$ in terms of k and cos t.

(c) Given that the normal to the curve at P has gradient $\frac{9}{10}$, find the value of k, giving your answer as an exact fraction.

▶️Answer/Explanation

(a) Find \(\cos t\) at P (x-axis crossing)

Curve crosses x-axis at P, so \(y = 0\).
\(3 \sin 2t – 4 \sin t = 0\).
Use \(\sin 2t = 2 \sin t \cos t\):
\(3 (2 \sin t \cos t) – 4 \sin t = 0\),
\(6 \sin t \cos t – 4 \sin t = 0\).
Factor: \(\sin t (6 \cos t – 4) = 0\).
\(\sin t = 0\), not in \(0 < t < \frac{\pi}{2}\),
\(6 \cos t – 4 = 0\), \(\cos t = \frac{4}{6} = \frac{2}{3}\).

Check: \(0 < \cos t < 1\), satisfied.
At P, \(\cos t = \frac{2}{3}\).

(b) Express \(\frac{dy}{dx}\) in terms of \(k\) and \(\cos t\)

\(\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}\).
\(\frac{dx}{dt} = k \sec^2 t = k (1 + \tan^2 t)\).
\(y = 3 \sin 2t – 4 \sin t\),
\(\frac{dy}{dt} = 3 \cdot 2 \cos 2t – 4 \cos t = 6 \cos 2t – 4 \cos t\).
Use \(\cos 2t = 2 \cos^2 t – 1\):
\(\frac{dy}{dt} = 6 (2 \cos^2 t – 1) – 4 \cos t = 12 \cos^2 t – 6 – 4 \cos t\).

So:
\(\frac{dy}{dx} = \frac{12 \cos^2 t – 6 – 4 \cos t}{k \sec^2 t}\).
Since \(\sec t = \frac{1}{\cos t}\), \(\sec^2 t = \frac{1}{\cos^2 t}\):
\(\frac{dy}{dx} = \frac{12 \cos^2 t – 6 – 4 \cos t}{k / \cos^2 t} = \frac{(12 \cos^2 t – 6 – 4 \cos t) \cos^2 t}{k}\).

Simplify:
\(\frac{dy}{dx} = \frac{12 \cos^4 t – 6 \cos^2 t – 4 \cos^3 t}{k}\).

(c) Find \(k\) given normal gradient \(\frac{9}{10}\) at P

Normal gradient = \(-\frac{1}{\frac{dy}{dx}}\) at P.
At P, \(\cos t = \frac{2}{3}\), so:
\(\cos^2 t = \frac{4}{9}\), \(\cos^3 t = \frac{8}{27}\), \(\cos^4 t = \frac{16}{81}\).
\(\frac{dy}{dx} = \frac{12 \cdot \frac{16}{81} – 6 \cdot \frac{4}{9} – 4 \cdot \frac{8}{27}}{k}\),
\(= \frac{\frac{192}{81} – \frac{24 \cdot 3}{9 \cdot 3} – \frac{32}{27}}{k} = \frac{\frac{64}{27} – \frac{72}{27} – \frac{32}{27}}{k} = \frac{64 – 72 – 32}{27k} = -\frac{40}{27k}\).

Normal gradient:
\(-\frac{1}{-\frac{40}{27k}} = \frac{27k}{40} = \frac{9}{10}\).
Solve:
\(27k = 36\),
\(k = \frac{36}{27} = \frac{4}{3}\).

Check: Positive, as required.

Final Answers:

(a) \(\cos t = \frac{2}{3}\).
(b) \(\frac{dy}{dx} = \frac{12 \cos^4 t – 6 \cos^2 t – 4 \cos^3 t}{k}\).
(c) \(k = \frac{4}{3}\).

Scroll to Top