Question 1
Topic-2.2 – Logarithmic and Exponential Functions
Use logarithms to show that the equation $5^{8y}=6^{7x}$ can be expressed in the form $y=kx$. Give the value of the constant k correct to 3 significant figures
▶️Answer/Explanation
Take the natural logarithm of both sides:
\[ \ln(5^{8y}) = \ln(6^{7x}) \]
Apply the logarithm power rule (\(\ln(a^b) = b \ln a\)):
\[ 8y \ln 5 = 7x \ln 6 \]
Solve for \(y\):
\[ 8y = 7x \frac{\ln 6}{\ln 5} \]
\[ y = \frac{7 \ln 6}{8 \ln 5} x \]
This is in the form \(y = kx\), where:
\[ k = \frac{7 \ln 6}{8 \ln 5} \]
Now, calculate \(k\) to 3 significant figures:
\(\ln 6 \approx 1.791759\),
\(\ln 5 \approx 1.609438\),
\(7 \ln 6 \approx 7 \cdot 1.791759 = 12.542313\),
\(8 \ln 5 \approx 8 \cdot 1.609438 = 12.875504\),
\(k = \frac{12.542313}{12.875504} \approx 0.97411\).
To 3 significant figures, \(k \approx 0.974\).
Final Answer:
The equation becomes \(y = kx\), where \(k = 0.974\).
Question 2
(a) Topic-2.4 – Differentiation
(b) Topic-2.3 – Trigonometry
Let $f(x) = 4sin^{2}3x.$
(a) Find the value of $f'(\frac{1}{4}\pi)$.
(b) Find $\int f(x)dx.$
▶️Answer/Explanation
Part (a): Find \(f'(\frac{1}{4}\pi)\)
First, compute the derivative \(f'(x)\):
\(f(x) = 4 \sin^2 3x\),
Use the chain rule: \(\frac{d}{dx} [\sin^2 3x] = 2 \sin 3x \cdot \frac{d}{dx} [\sin 3x]\),
\(\frac{d}{dx} [\sin 3x] = \cos 3x \cdot 3 = 3 \cos 3x\),
So, \(f'(x) = 4 \cdot 2 \sin 3x \cdot 3 \cos 3x = 24 \sin 3x \cos 3x\).
Use the double-angle identity: \(2 \sin \theta \cos \theta = \sin 2\theta\):
\(f'(x) = 24 \sin 3x \cos 3x = 12 \cdot 2 \sin 3x \cos 3x = 12 \sin 6x\).
Evaluate at \(x = \frac{1}{4}\pi\):
\(6x = 6 \cdot \frac{1}{4}\pi = \frac{3}{2}\pi\),
\(\sin \frac{3}{2}\pi = \sin 270^\circ = -1\),
\(f'(\frac{1}{4}\pi) = 12 \cdot (-1) = -12\).
Part (b): Find \(\int f(x) \, dx\)
Integrate \(f(x) = 4 \sin^2 3x\):
Use the identity \(\sin^2 \theta = \frac{1 – \cos 2\theta}{2}\),
\(f(x) = 4 \cdot \frac{1 – \cos 6x}{2} = 2 – 2 \cos 6x\),
\(\int (2 – 2 \cos 6x) \, dx = 2x – 2 \cdot \frac{\sin 6x}{6} + C = 2x – \frac{1}{3} \sin 6x + C\).
Final Answer:
(a) \(f'(\frac{1}{4}\pi) = -12\)
(b) \(\int f(x) \, dx = 2x – \frac{1}{3} \sin 6x + C\)
Question 3
Topic-2.4- Differentiation
A curve has equation $6e^{-x}y^{2}+e^{2x}-12y+7=0.$
Find the gradient of the curve at the point $(\ln 3, 2).$
▶️Answer/Explanation
Define the equation as \(F(x, y) = 6e^{-x} y^2 + e^{2x} – 12y + 7 = 0\). The gradient is \(\frac{dy}{dx}\), found by:
\[ \frac{d}{dx} [F(x, y)] = 0 \]
Differentiate each term:
\(\frac{d}{dx} [6e^{-x} y^2] = 6 \left[ e^{-x} \cdot 2y \frac{dy}{dx} + (-e^{-x}) y^2 \right] = 12 e^{-x} y \frac{dy}{dx} – 6 e^{-x} y^2\),
\(\frac{d}{dx} [e^{2x}] = 2 e^{2x}\),
\(\frac{d}{dx} [-12y] = -12 \frac{dy}{dx}\),
\(\frac{d}{dx} [7] = 0\).
So:
\[ 12 e^{-x} y \frac{dy}{dx} – 6 e^{-x} y^2 + 2 e^{2x} – 12 \frac{dy}{dx} = 0 \]
Solve for \(\frac{dy}{dx}\):
\[ (12 e^{-x} y – 12) \frac{dy}{dx} = 6 e^{-x} y^2 – 2 e^{2x} \]
\[ \frac{dy}{dx} = \frac{6 e^{-x} y^2 – 2 e^{2x}}{12 e^{-x} y – 12} \]
Evaluate at \((\ln 3, 2)\):
\(x = \ln 3\), \(e^x = 3\), \(e^{-x} = \frac{1}{3}\), \(e^{2x} = e^{2 \ln 3} = 9\),
\(y = 2\),
Numerator: \(6 \cdot \frac{1}{3} \cdot 2^2 – 2 \cdot 9 = 6 \cdot \frac{1}{3} \cdot 4 – 18 = 8 – 18 = -10\),
Denominator: \(12 \cdot \frac{1}{3} \cdot 2 – 12 = 12 \cdot \frac{2}{3} – 12 = 8 – 12 = -4\),
\(\frac{dy}{dx} = \frac{-10}{-4} = \frac{5}{2}\).
Final Answer:
Gradient at \((\ln 3, 2) = \frac{5}{2}\).
Question 4
(a) Topic-2.2- Logarithmic and exponential functions
(b) Topic-2.2- Logarithmic and exponential functions
(c) Topic-2.6- Numerical solution of equations
(a) Sketch the graphs of $y=1+e^{2x}$ and $y=|x-4|$ on the same diagram.
(b) The two graphs meet at the point P.
Show that the x-coordinate of P satisfies the equation $x=\frac{1}{2}ln(3-x)$.
(c) Use an iterative formula, based on the equation in part (b), to find the x-coordinate of P correct to 3 significant figures. Use an initial value of 0.45 and give the result of each iteration to 5 significant figures.
▶️Answer/Explanation
Part (a): Sketch the graphs
\(y = 1 + e^{2x}\):
Exponential growth, minimum at \(x = -\infty\) where \(y \to 1\), increases rapidly as \(x\) increases.
At \(x = 0\), \(y = 1 + e^0 = 2\).
\(y = |x – 4|\):
V-shape, vertex at \((4, 0)\), symmetric about \(x = 4\).
At \(x = 0\), \(y = |0 – 4| = 4\); at \(x = 4\), \(y = 0\).
Sketch: The graphs intersect once to the left of \(x = 4\), since \(1 + e^{2x}\) starts below \(|x – 4|\) and grows faster.
Part (b): Show the x-coordinate of P satisfies \(x = \frac{1}{2} \ln (3 – x)\)
At intersection point P, \(y = 1 + e^{2x} = |x – 4|\). Since P is left of \(x = 4\) (from the sketch), \(x < 4\), so \(|x – 4| = 4 – x\):
\[ 1 + e^{2x} = 4 – x \]
\[ e^{2x} = 4 – x – 1 \]
\[ e^{2x} = 3 – x \]
\[ 2x = \ln (3 – x) \]
\[ x = \frac{1}{2} \ln (3 – x) \]
This is the required equation (noting \(x < 4\), and \(3 – x > 0\)).
Part (c): Iterative solution for \(x\) to 3 significant figures
Use the iterative formula:
\[ x_{n+1} = \frac{1}{2} \ln (3 – x_n) \]
Initial value: \(x_0 = 0.45\). Compute to 5 significant figures:
\(x_0 = 0.45\)
\(3 – 0.45 = 2.55\)
\(\ln 2.55 \approx 0.93609\)
\(x_1 = \frac{1}{2} \cdot 0.93609 = 0.46805\)
\(x_1 = 0.46805\)
\(3 – 0.46805 = 2.53195\)
\(\ln 2.53195 \approx 0.92882\)
\(x_2 = \frac{1}{2} \cdot 0.92882 = 0.46441\)
\(x_2 = 0.46441\)
\(3 – 0.46441 = 2.53559\)
\(\ln 2.53559 \approx 0.93036\)
\(x_3 = \frac{1}{2} \cdot 0.93036 = 0.46518\)
\(x_3 = 0.46518\)
\(3 – 0.46518 = 2.53482\)
\(\ln 2.53482 \approx 0.93005\)
\(x_4 = \frac{1}{2} \cdot 0.93005 = 0.46502\)
\(x_4 = 0.46502\)
\(3 – 0.46502 = 2.53498\)
\(\ln 2.53498 \approx 0.93011\)
\(x_5 = \frac{1}{2} \cdot 0.93011 = 0.46506\)
Converges to \(x \approx 0.465\) (3 significant figures).
Final Answer:
(a) Sketch: \(y = 1 + e^{2x}\) (exponential, starts at \(y = 1\)), \(y = |x – 4|\) (V at \((4, 0)\)), intersect left of \(x = 4\).
(b) \(x = \frac{1}{2} \ln (3 – x)\) (shown).
(c) \(x \approx 0.465\) (iterations: 0.46805, 0.46441, 0.46518, 0.46502, 0.46506).
Question 5
(a) Topic- 2.1- Algebra
(b) Topic- 2.1- Algebra
(c) Topic- 2.3- Trigonometry
The polynomial $p(x)$ is defined by
$p(x)=ax^{3}+bx^{2}-ax+8,$
where a and b are constants. It is given that $(x+2)$ is a factor of $p(x)$, and that the remainder is 24 when
$p(x)$ is divided by $(x-2)$.
(a) Find the values of a and b.
(b) Factorise $p(x)$ and hence show that the equation $p(x)=0$ has exactly one real root.
(c) Solve the equation $p(\frac{1}{2}cosec~\theta)=0$ for $-90^{\circ}<\theta<90^{\circ}$
▶️Answer/Explanation
Part (a): Find \(a\) and \(b\)
Given \((x + 2)\) is a factor:
\(p(-2) = 0\).
\(p(-2) = a(-2)^3 + b(-2)^2 – a(-2) + 8 = -8a + 4b + 2a + 8 = -6a + 4b + 8 = 0\).
\(-6a + 4b + 8 = 0 \implies -3a + 2b + 4 = 0 \quad (1)\).
Remainder is 24 when divided by \((x – 2)\):
\(p(2) = 24\).
\(p(2) = a(2)^3 + b(2)^2 – a(2) + 8 = 8a + 4b – 2a + 8 = 6a + 4b + 8 = 24\).
\(6a + 4b + 8 = 24 \implies 6a + 4b = 16 \implies 3a + 2b = 8 \quad (2)\).
Solve (1) and (2):
\(-3a + 2b = -4\)
\(3a + 2b = 8\)
Add: \(4b = 4 \implies b = 1\).
Substitute into (2): \(3a + 2 \cdot 1 = 8 \implies 3a + 2 = 8 \implies 3a = 6 \implies a = 2\).
So, \(a = 2\), \(b = 1\).
Part (b): Factorize \(p(x)\) and show one real root
With \(a = 2\), \(b = 1\):
\(p(x) = 2x^3 + x^2 – 2x + 8\).
Since \((x + 2)\) is a factor, use synthetic division with \(x = -2\):
Coefficients: \(2, 1, -2, 8\).
\[
\begin{array}{r|rrrr}
-2 & 2 & 1 & -2 & 8 \\
& & -4 & 6 & -8 \\
\hline
& 2 & -3 & 4 & 0 \\
\end{array}
\]
Quotient: \(2x^2 – 3x + 4\), remainder 0.
\(p(x) = (x + 2)(2x^2 – 3x + 4)\).
Check \(2x^2 – 3x + 4\) for roots:
Discriminant: \(\Delta = (-3)^2 – 4 \cdot 2 \cdot 4 = 9 – 32 = -23 < 0\). No real roots.
Roots of \(p(x) = 0\):
\((x + 2)(2x^2 – 3x + 4) = 0 \implies x + 2 = 0 \implies x = -2\).
The quadratic has no real roots, so \(x = -2\) is the only real root.
Part (c): Solve \(p\left(\frac{1}{2} \csc \theta\right) = 0\) for \(-90^\circ < \theta < 90^\circ\)
\(p\left(\frac{1}{2} \csc \theta\right) = 0\).
Since \(p(x) = 0\) at \(x = -2\):
\(\frac{1}{2} \csc \theta = -2 \implies \csc \theta = -4 \implies \sin \theta = -\frac{1}{4}\).
For \(-90^\circ < \theta < 90^\circ\):
\(\sin \theta = -\frac{1}{4} \implies \theta = -\arcsin\left(\frac{1}{4}\right) \approx -14.48^\circ\), which is in the interval.
\(\sin \theta\) is positive at \(\arcsin\left(\frac{1}{4}\right) \approx 14.48^\circ\), but we need the negative case.
Final Answer:
(a) \(a = 2\), \(b = 1\)
(b) \(p(x) = (x + 2)(2x^2 – 3x + 4)\), one real root at \(x = -2\)
(c) \(\theta = -\arcsin\left(\frac{1}{4}\right)\)
Question 6
(a) Topic-2.6 – Numerical solution of equations
(b) Topic-2.5 – Integration
(c) Topic-2.6 – Numerical solution of equations
(d) Topic-2.5 – Integration
The diagram shows the curves with equations
$y = \sqrt[3]{5x^{2} + 7}$
and
$y = \frac{27}{2x + 5}$
for
$x \geq 0$.
The curves meet at the point (2, 3).
Region A is bounded by the curve
$y = \sqrt[3]{5x^{2} + 7}$
and the straight lines
$x = 0$ ,
$x = 2$
and
$y = 0$
Region B is bounded by the two curves and the straight line
$x = 0.$
(a) Use the trapezium rule with two intervals to find an approximation to the area of region A. Give
your answer correct to 3 significant figures.
(b) Find the exact total area of regions A and B. Give your answer in the form klnm, where k and m are constants.
(c) Deduce an approximation to the area of region B. Give your answer correct to 3 significant figures.
(d) State, with a reason, whether your answer to part (c) is an over-estimate or an under-estimate of
the area of region B.
▶️Answer/Explanation
Solution :-
(a) Use y-values $\sqrt[3]{7}$, $\sqrt[3]{12}$ and $\sqrt[3]{27}$, or decimal equivalents
Use correct formula, or equivalent, with $h=1$
Obtain 4.75
(b) Integrate to obtain form $k~ln(2x+5)$
Obtain correct $\frac{27}{2}ln(2x+5)$
Apply limits 0 and 2 to obtain $\frac{27}{2}ln~9$ or exact equivalent of required form and
no extra terms
(c) Obtain 3.19
(d) State under-estimate …
… because (a) is over-estimate due to tops of trapezia being above curve
Question 7
(a) Topic-2.3 -Trigonometry
(b) Topic-2.3 -Trigonometry
(a) Express $4~sin~\theta~sin(\theta+60^{\circ})$ in the form
$a+R~sin(2\theta-\alpha),$
where a and R are positive integers and $0^{\circ}<\alpha<90^{\circ}$.
(b) Hence find the smallest positive value of $\theta$ satisfying the equation
$\frac{1}{5}+4~sin~\theta~sin(\theta+60^{\circ})=0.$
▶️Answer/Explanation
Part (a): Express \(4 \sin \theta \sin(\theta + 60^\circ)\) as \(a + R \sin(2\theta – \alpha)\)
Use the identity \(\sin A \sin B = \frac{1}{2} [\cos(A – B) – \cos(A + B)]\):
\(A = \theta\), \(B = \theta + 60^\circ\),
\(4 \sin \theta \sin(\theta + 60^\circ) = 4 \cdot \frac{1}{2} [\cos(\theta – (\theta + 60^\circ)) – \cos(\theta + \theta + 60^\circ)] = 2 [\cos(-60^\circ) – \cos(2\theta + 60^\circ)]\),
\(\cos(-60^\circ) = \cos 60^\circ = \frac{1}{2}\),
\(= 2 \left[ \frac{1}{2} – \cos(2\theta + 60^\circ) \right] = 1 – 2 \cos(2\theta + 60^\circ)\).
Rewrite \(-\cos(2\theta + 60^\circ) = \sin(2\theta + 60^\circ – 90^\circ) = \sin(2\theta – 30^\circ)\):
\(4 \sin \theta \sin(\theta + 60^\circ) = 1 – 2 \cos(2\theta + 60^\circ) = 1 + 2 \sin(2\theta – 30^\circ)\).
Matches form \(a + R \sin(2\theta – \alpha)\):
\(a = 1\), \(R = 2\), \(\alpha = -30^\circ\).
But \(\alpha\) must be in \((0^\circ, 90^\circ)\). Adjust:
\(\sin(2\theta – 30^\circ) = -\sin(2\theta – 30^\circ – 180^\circ) = -\sin(2\theta – 210^\circ)\),
\(1 + 2 \sin(2\theta – 30^\circ) = 1 – 2 \sin(2\theta – 210^\circ)\),
Still negative \(\alpha\). Test: Original fits with \(\alpha = 30^\circ\), but let’s correct:
Use identity correctly: Should be \(1 + 2 \sin(2\theta + 30^\circ)\), adjust phase:
Final check: \(1 – 2 \cos(2\theta + 60^\circ)\), use \(-\cos x = \sin(x – 90^\circ)\), but let’s derive properly: Correct form is:
\(R \sin(2\theta – \alpha) = 2 \sin(30^\circ – 2\theta)\), so adjust:
Final: \(4 \sin \theta \sin(\theta + 60^\circ) = 1 + 2 \sin(2\theta – 30^\circ)\), \(\alpha = 30^\circ\) after correction.
Part (b): Smallest positive \(\theta\) for \(\frac{1}{5} + 4 \sin \theta \sin(\theta + 60^\circ) = 0\)
\[ \frac{1}{5} + 1 + 2 \sin(2\theta – 30^\circ) = 0 \]
\[ 1 + \frac{1}{5} + 2 \sin(2\theta – 30^\circ) = 0 \]
\[ \frac{6}{5} + 2 \sin(2\theta – 30^\circ) = 0 \]
\[ 2 \sin(2\theta – 30^\circ) = -\frac{6}{5} \]
\[ \sin(2\theta – 30^\circ) = -\frac{3}{5} \]
Solve for smallest positive \(\theta\):
\(2\theta – 30^\circ = \arcsin\left(-\frac{3}{5}\right) \approx -36.87^\circ\) or \(180^\circ – (-36.87^\circ) = 216.87^\circ\),
\(2\theta – 30^\circ = -36.87^\circ + 360k^\circ\),
\(2\theta = -6.87^\circ + 360k^\circ\),
\(\theta = -3.435^\circ + 180k^\circ\).
Smallest positive: \(k = 1\), \(\theta = -3.435^\circ + 180^\circ = 176.565^\circ\).
Final Answer:
(a) \(4 \sin \theta \sin(\theta + 60^\circ) = 1 + 2 \sin(2\theta – 30^\circ)\), \(a = 1\), \(R = 2\), \(\alpha = 30^\circ\)
(b) \(\theta = 176.565^\circ\) (smallest positive)