Home / 9709_w24_qp_23

Question 1

(a) Topic-2.2 – Logarithmic and Exponential Functions

(b) Topic-2.2 – Logarithmic and Exponential Functions

The variables x and y satisfy the equation $a^{2}y=e^{3x}+k$, where a and k are constants.
The graph of y against x is a straight line.

(a) Use logarithms to show that the gradient of the straight line is $\frac{3}{2~ln~a}$ 

(b) Given that the straight line passes through the points (0.4, 0.95) and (3.3, 3.80), find the values of a and k.

▶️Answer/Explanation

Part (a): Show the gradient is \(\frac{3}{2 \ln a}\)

Given \(a^2 y = e^{3x} + k\), and \(y\) vs. \(x\) is a straight line (\(y = mx + c\)), use logarithms:
\[ a^2 y = e^{3x} + k \]
\[ y = \frac{e^{3x} + k}{a^2} = \frac{e^{3x}}{a^2} + \frac{k}{a^2} \]

For \(y\) to be linear, apply natural log to align terms:
Take \(\ln\) of both sides of the original (adjust form):
Multiply by \(a^2\): \(a^2 y – k = e^{3x}\),
\[ \ln (a^2 y – k) = 3x \]
\[ \ln a^2 + \ln (y – \frac{k}{a^2}) = 3x \]
\[ 2 \ln a + \ln (y – \frac{k}{a^2}) = 3x \]
\[ \ln (y – \frac{k}{a^2}) = 3x – 2 \ln a \]
\[ y – \frac{k}{a^2} = e^{3x – 2 \ln a} = e^{3x} e^{-2 \ln a} = \frac{e^{3x}}{a^2} \]
\[ y = \frac{e^{3x}}{a^2} + \frac{k}{a^2} \]

This isn’t linear unless misinterpreted. Correct approach:
Assume \(a^{2y} = e^{3x} + k\) (common form):
\[ 2y \ln a = \ln (e^{3x} + k) \]
\[ y = \frac{\ln (e^{3x} + k)}{2 \ln a} \]
For linearity, \(e^{3x} + k = e^{3x + c}\), so adjust:
Take \(\ln\) correctly:
\[ a^{2y} = e^{3x} + k \]
\[ 2y \ln a = \ln (e^{3x} + k) \]
\[ y = \frac{3x + \ln (1 + k e^{-3x})}{2 \ln a} \]
Approximate for large \(x\), but directly:
Differentiate implicitly:
\[ a^2 y = e^{3x} + k \]
\[ a^2 \frac{dy}{dx} = 3 e^{3x} \]
\[ \frac{dy}{dx} = \frac{3 e^{3x}}{a^2} \]
Not constant. Correct equation likely \(a^{2y} = e^{3x + k}\):
\[ 2y \ln a = 3x + k \]
\[ y = \frac{3x + k}{2 \ln a} = \frac{3}{2 \ln a} x + \frac{k}{2 \ln a} \]
Gradient = \(\frac{3}{2 \ln a}\).

Part (b): Find \(a\) and \(k\)

Using \(y = \frac{3}{2 \ln a} x + \frac{k}{2 \ln a}\), points \((0.4, 0.95)\), \((3.3, 3.80)\):
Gradient: \(\frac{3.80 – 0.95}{3.3 – 0.4} = \frac{2.85}{2.9} = \frac{57}{58}\),
\(\frac{3}{2 \ln a} = \frac{57}{58} \implies 2 \ln a = \frac{3 \cdot 58}{57} = \frac{58}{19} \implies \ln a = \frac{29}{19} \implies a = e^{\frac{29}{19}}\).

Substitute \((0.4, 0.95)\):
\[ 0.95 = \frac{3}{2 \ln a} (0.4) + \frac{k}{2 \ln a} \]
\[ 0.95 = \frac{57}{58} \cdot 0.4 + \frac{k}{\frac{58}{19}} \]
\[ 0.95 = \frac{22.8}{58} + \frac{19k}{58} \]
\[ 0.95 – \frac{22.8}{58} = \frac{19k}{58} \]
\[ 0.95 – 0.393103 = 0.556897 = \frac{19k}{58} \]
\[ k = \frac{0.556897 \cdot 58}{19} \approx 1.699 \]

Final Answer:

(a) Gradient = \(\frac{3}{2 \ln a}\) (shown)

(b) \(a = e^{\frac{29}{19}}\), \(k = \frac{9367}{5510}\) (exact, approx. 1.699)

Question 2

Topic-2.1 – Algebra

Solve the inequality $|x-7|>4x+3.$

▶️Answer/Explanation

Case 1: \(x – 7 \geq 0\) (i.e., \(x \geq 7\))

\[ x – 7 > 4x + 3 \]
\[ -7 – 3 > 4x – x \]
\[ -10 > 3x \]
\[ x < -\frac{10}{3} \approx -3.333 \]

Since \(x < -\frac{10}{3} < 7\) contradicts \(x \geq 7\), no solutions here.

Case 2: \(x – 7 < 0\) (i.e., \(x < 7\))

\[ -(x – 7) > 4x + 3 \]
\[ -x + 7 > 4x + 3 \]
\[ 7 – 3 > 4x + x \]
\[ 4 > 5x \]
\[ x < \frac{4}{5} = 0.8 \]

Since \(x < \frac{4}{5} < 7\). Consistent. Test:
\(x = 0\): \(|0 – 7| = 7 > 4 \cdot 0 + 3 = 3\), true.
\(x = 1\): \(|1 – 7| = 6 > 4 \cdot 1 + 3 = 7\), false.
Solution: \(x < \frac{4}{5}\).

Final Answer:

\[ x < \frac{4}{5} \]

Question 3

(a) Topic-2.4 – Differentiation

(b) Topic-2.5 – Integration

The function f is defined by $f(x)=tan^{2}(\frac{1}{2}x)$ for $0\le x<\pi$.

(a) Find the exact value of $f'(\frac{2}{3}\pi)$.

(b) Find the exact value of $\int_{0}^{\frac{1}{2}\pi}(f(x)+sin~x)dx.$

▶️Answer/Explanation

Part (a): Find \(f’\left(\frac{2}{3}\pi\right)\)

\(f(x) = \tan^2\left(\frac{1}{2}x\right)\),
Derivative: \(f'(x) = 2 \tan\left(\frac{1}{2}x\right) \cdot \frac{d}{dx}\left[\tan\left(\frac{1}{2}x\right)\right]\),
\(\frac{d}{dx}\left[\tan\left(\frac{1}{2}x\right)\right] = \sec^2\left(\frac{1}{2}x\right) \cdot \frac{1}{2}\),
\(f'(x) = 2 \tan\left(\frac{1}{2}x\right) \cdot \frac{1}{2} \sec^2\left(\frac{1}{2}x\right) = \tan\left(\frac{1}{2}x\right) \sec^2\left(\frac{1}{2}x\right)\).

At \(x = \frac{2}{3}\pi\):
\(\frac{1}{2}x = \frac{1}{2} \cdot \frac{2}{3}\pi = \frac{1}{3}\pi\),
\(\tan\left(\frac{1}{3}\pi\right) = \tan 60^\circ = \sqrt{3}\),
\(\sec\left(\frac{1}{3}\pi\right) = \frac{1}{\cos 60^\circ} = \frac{1}{\frac{1}{2}} = 2\), \(\sec^2\left(\frac{1}{3}\pi\right) = 4\),
\(f’\left(\frac{2}{3}\pi\right) = \sqrt{3} \cdot 4 = 4\sqrt{3}\).

Part (b): Find \(\int_{0}^{\frac{1}{2}\pi} (f(x) + \sin x) \, dx\)

\(\int_{0}^{\frac{1}{2}\pi} \left( \tan^2\left(\frac{1}{2}x\right) + \sin x \right) dx = \int_{0}^{\frac{1}{2}\pi} \tan^2\left(\frac{1}{2}x\right) \, dx + \int_{0}^{\frac{1}{2}\pi} \sin x \, dx\).

First integral: \(\tan^2 \theta = \sec^2 \theta – 1\),
Let \(\theta = \frac{1}{2}x\), \(dx = 2 d\theta\), limits \(x = 0 \to \theta = 0\), \(x = \frac{1}{2}\pi \to \theta = \frac{1}{4}\pi\),
\(\int_{0}^{\frac{1}{2}\pi} \tan^2\left(\frac{1}{2}x\right) \, dx = 2 \int_{0}^{\frac{1}{4}\pi} (\sec^2 \theta – 1) \, d\theta\),
\(= 2 \left[ \tan \theta – \theta \right]_{0}^{\frac{1}{4}\pi} = 2 \left( \tan \frac{1}{4}\pi – \frac{1}{4}\pi \right) = 2 \left( 1 – \frac{\pi}{4} \right) = 2 – \frac{\pi}{2}\).

Second integral:
\(\int_{0}^{\frac{1}{2}\pi} \sin x \, dx = [-\cos x]_{0}^{\frac{1}{2}\pi} = -\cos \frac{1}{2}\pi + \cos 0 = 0 + 1 = 1\).

Total: \(2 – \frac{\pi}{2} + 1 = 3 – \frac{\pi}{2}\).

Final Answer:

(a) \(f’\left(\frac{2}{3}\pi\right) = 4\sqrt{3}\)

(b) \(\int_{0}^{\frac{1}{2}\pi} (f(x) + \sin x) \, dx = 3 – \frac{\pi}{2}\)

Question 4

(a) Topic-2.1 – Algebra

(b) Topic-2.1 – Algebra

(c) Topic-2.3  – Trigonometry

 The polynomial $p(x)$ is defined by

$p(x)=ax^{3}-ax^{2}-15x+18,$

where a is a constant. It is given that $(x+2)$ is a factor of $p(x)$.

(a) Find the value of a.

(b) Hence factorise $p(x)$ completely.

(c) Solve the equation $p(cosec^{2}\theta)=0$ for $-90^{\circ}<\theta<90^{\circ}$.

▶️Answer/Explanation

Part (a): Find \(a\)

Since \((x + 2)\) is a factor, \(p(-2) = 0\):
\[ p(-2) = a(-2)^3 – a(-2)^2 – 15(-2) + 18 = -8a – 4a + 30 + 18 = -12a + 48 = 0 \]
\[ -12a + 48 = 0 \implies a = 4 \]

Part (b): Factorize \(p(x)\) completely

With \(a = 4\):
\[ p(x) = 4x^3 – 4x^2 – 15x + 18 \]

Use synthetic division with \(x = -2\):
Coefficients: \(4, -4, -15, 18\)
\[
\begin{array}{r|rrrr}
-2 & 4 & -4 & -15 & 18 \\
& & -8 & 24 & -18 \\
\hline
& 4 & -12 & 9 & 0 \\
\end{array}
\]
Quotient: \(4x^2 – 12x + 9 = (2x – 3)^2\).
\[ p(x) = (x + 2)(2x – 3)^2 \]

Part (c): Solve \(p(\csc^2 \theta) = 0\) for \(-90^\circ < \theta < 90^\circ\)

\[ p(\csc^2 \theta) = (\csc^2 \theta + 2)(2 \csc^2 \theta – 3)^2 = 0 \]

\(\csc^2 \theta + 2 = 0 \implies \csc^2 \theta = -2\), impossible (\(\csc^2 \theta \geq 1\)).
\(2 \csc^2 \theta – 3 = 0 \implies \csc^2 \theta = \frac{3}{2} \implies \sin^2 \theta = \frac{2}{3} \implies \sin \theta = \pm \sqrt{\frac{2}{3}}\).

For \(-90^\circ < \theta < 90^\circ\):
\(\theta = \pm \arcsin\left(\sqrt{\frac{2}{3}}\right)\).

Final Answer:

(a) \(a = 4\)

(b) \(p(x) = (x + 2)(2x – 3)^2\)

(c) \(\theta = \pm \arcsin\left(\sqrt{\frac{2}{3}}\right)\)

Question 5

(a) Topic-2.5 – Integration

(b) Topic-2.6 – Numerical solution of equations

It is given that
\[\int_{a}^{a^{3}}\frac{10}{2x+1}dx=7,\]
where a is a constant greater than 1.

(a) Show that $a=\sqrt[3]{0.5e^{1.4}(2a+1)-0.5}$.

(b) Use an iterative formula, based on the equation in part (a), to find the value of a correct to 3 significant figures. Use an initial value of 2 and give the result of each iteration to 5 significant figures.

▶️Answer/Explanation

Part (a): Showing the equation

We’re given the integral:
\[
\int_{a}^{a^3} \frac{10}{2x + 1} \, dx = 7
\]
and need to show that:
\[
a = \sqrt[3]{0.5e^{1.4}(2a + 1) – 0.5}
\]

First, solve the integral. The integrand is \(\frac{10}{2x + 1}\), and notice that the derivative of the denominator \(2x + 1\) is 2, suggesting a substitution might help. The integral of \(\frac{1}{2x + 1} \, dx\) resembles \(\ln|2x + 1|\), adjusted by constants. So:

\[
\int \frac{10}{2x + 1} \, dx = 10 \cdot \frac{1}{2} \ln|2x + 1| = 5 \ln|2x + 1| + C
\]

Now evaluate it from \(x = a\) to \(x = a^3\):
\[
\left[ 5 \ln|2x + 1| \right]_{a}^{a^3} = 5 \ln|2a^3 + 1| – 5 \ln|2a + 1|
\]

Using logarithm properties (\(\ln A – \ln B = \ln \frac{A}{B}\)):
\[
5 \ln \left| \frac{2a^3 + 1}{2a + 1} \right| = 7
\]

Since \(a > 1\), both \(2a^3 + 1\) and \(2a + 1\) are positive, so we drop the absolute value:
\[
5 \ln \left( \frac{2a^3 + 1}{2a + 1} \right) = 7
\]

Divide by 5:
\[
\ln \left( \frac{2a^3 + 1}{2a + 1} \right) = \frac{7}{5} = 1.4
\]

Exponentiate both sides (\(e^{\ln x} = x\)):
\[
\frac{2a^3 + 1}{2a + 1} = e^{1.4}
\]

Multiply through by \(2a + 1\):
\[
2a^3 + 1 = e^{1.4} (2a + 1)
\]

Solve for \(a^3\):
\[
2a^3 = e^{1.4} (2a + 1) – 1
\]
\[
a^3 = \frac{e^{1.4} (2a + 1) – 1}{2} = 0.5 e^{1.4} (2a + 1) – 0.5
\]

Take the cube root:
\[
a = \sqrt[3]{0.5 e^{1.4} (2a + 1) – 0.5}
\]

Part (b): Iterative solution

Now use the equation \(a = \sqrt[3]{0.5 e^{1.4} (2a + 1) – 0.5}\) as an iterative formula:
\[
a_{n+1} = \sqrt[3]{0.5 e^{1.4} (2a_n + 1) – 0.5}
\]
Start with \(a_0 = 2\), and compute to 5 significant figures each step until \(a\) stabilizes to 3 significant figures.

Step 1: \(a_0 = 2\)
\[
a_1 = \sqrt[3]{0.5 e^{1.4} (2 \cdot 2 + 1) – 0.5} = \sqrt[3]{0.5 e^{1.4} \cdot 5 – 0.5}
\]
\(e^{1.4} \approx 4.0552\), so:
\[
0.5 \cdot 4.0552 \cdot 5 – 0.5 \approx 0.5 \cdot 20.276 – 0.5 = 10.138 – 0.5 = 9.638
\]
\[
a_1 = \sqrt[3]{9.638} \approx 2.1277
\]

Step 2: \(a_1 = 2.1277\)
\[
a_2 = \sqrt[3]{0.5 e^{1.4} (2 \cdot 2.1277 + 1) – 0.5} = \sqrt[3]{0.5 e^{1.4} \cdot 5.2554 – 0.5}
\]
\[
0.5 \cdot 4.0552 \cdot 5.2554 – 0.5 \approx 0.5 \cdot 21.312 – 0.5 = 10.656 – 0.5 = 10.156
\]
\[
a_2 = \sqrt[3]{10.156} \approx 2.1657
\]

Step 3: \(a_2 = 2.1657\)
\[
a_3 = \sqrt[3]{0.5 e^{1.4} (2 \cdot 2.1657 + 1) – 0.5} = \sqrt[3]{0.5 e^{1.4} \cdot 5.3314 – 0.5}
\]
\[
0.5 \cdot 4.0552 \cdot 5.3314 – 0.5 \approx 0.5 \cdot 21.620 – 0.5 = 10.810 – 0.5 = 10.310
\]
\[
a_3 = \sqrt[3]{10.310} \approx 2.1758
\]

Step 4: \(a_3 = 2.1758\)
\[
a_4 = \sqrt[3]{0.5 e^{1.4} (2 \cdot 2.1758 + 1) – 0.5} = \sqrt[3]{0.5 e^{1.4} \cdot 5.3516 – 0.5}
\]
\[
0.5 \cdot 4.0552 \cdot 5.3516 – 0.5 \approx 0.5 \cdot 21.701 – 0.5 = 10.850 – 0.5 = 10.350
\]
\[
a_4 = \sqrt[3]{10.350} \approx 2.1785
\]

Step 5: \(a_4 = 2.1785\)
\[
a_5 = \sqrt[3]{0.5 e^{1.4} (2 \cdot 2.1785 + 1) – 0.5} = \sqrt[3]{0.5 e^{1.4} \cdot 5.3570 – 0.5}
\]
\[
0.5 \cdot 4.0552 \cdot 5.3570 – 0.5 \approx 0.5 \cdot 21.724 – 0.5 = 10.862 – 0.5 = 10.362
\]
\[
a_5 = \sqrt[3]{10.362} \approx 2.1793
\]

Step 6: \(a_5 = 2.1793\)
\[
a_6 = \sqrt[3]{0.5 e^{1.4} (2 \cdot 2.1793 + 1) – 0.5} = \sqrt[3]{0.5 e^{1.4} \cdot 5.3586 – 0.5}
\]
\[
0.5 \cdot 4.0552 \cdot 5.3586 – 0.5 \approx 0.5 \cdot 21.731 – 0.5 = 10.865 – 0.5 = 10.365
\]
\[
a_6 = \sqrt[3]{10.365} \approx 2.1795
\]

Check: \(a_5 = 2.1793\), \(a_6 = 2.1795\). To 3 significant figures, both are 2.18, and the values are stabilizing. So:
\[
a \approx 2.18
\]

Final Answer:

(a) The equation \(a = \sqrt[3]{0.5 e^{1.4} (2a + 1) – 0.5}\) comes from solving the integral and rearranging.
(b) Using iteration starting at 2, \(a \approx 2.18\) to 3 significant figures after 6 steps:
\(a_1 = 2.1277\)
\(a_2 = 2.1657\)
\(a_3 = 2.1758\)
\(a_4 = 2.1785\)
\(a_5 = 2.1793\)
\(a_6 = 2.1795\)

Question 6

(a) Topic-2.4 – Differentiation

(b) Topic-2.4 – Differentiation

A curve has parametric equations

$x=\frac{e^{2t}-2}{e^{2t}+1},\quad y=e^{3t}+1.$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t.

(b) Find the exact gradient of the curve at the point where the curve crosses the y-axis.

▶️Answer/Explanation

Part (a): Find \(\frac{dy}{dx}\) in terms of \(t\)

For parametric equations \(x = f(t)\) and \(y = g(t)\), the derivative \(\frac{dy}{dx}\) is given by:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\]
So, we need \(\frac{dx}{dt}\) and \(\frac{dy}{dt}\).

Given:
\[
x = \frac{e^{2t} – 2}{e^{2t} + 1}, \quad y = e^{3t} + 1
\]

Find \(\frac{dx}{dt}\):
Use the quotient rule on \(x = \frac{e^{2t} – 2}{e^{2t} + 1}\). If \(u = e^{2t} – 2\) and \(v = e^{2t} + 1\):
\(\frac{du}{dt} = 2e^{2t}\)
\(\frac{dv}{dt} = 2e^{2t}\)
Quotient rule: \(\frac{d}{dt} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dt} – u \frac{dv}{dt}}{v^2}\)

So:
\[
\frac{dx}{dt} = \frac{(e^{2t} + 1)(2e^{2t}) – (e^{2t} – 2)(2e^{2t})}{(e^{2t} + 1)^2}
\]
Numerator:
\[
(e^{2t} + 1)(2e^{2t}) – (e^{2t} – 2)(2e^{2t}) = 2e^{4t} + 2e^{2t} – (2e^{4t} – 4e^{2t}) = 2e^{4t} + 2e^{2t} – 2e^{4t} + 4e^{2t} = 6e^{2t}
\]
Denominator: \((e^{2t} + 1)^2\)
\[
\frac{dx}{dt} = \frac{6e^{2t}}{(e^{2t} + 1)^2}
\]

Find \(\frac{dy}{dt}\):
\[
y = e^{3t} + 1
\]
\[
\frac{dy}{dt} = 3e^{3t}
\]

Compute \(\frac{dy}{dx}\):
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3e^{3t}}{\frac{6e^{2t}}{(e^{2t} + 1)^2}} = 3e^{3t} \cdot \frac{(e^{2t} + 1)^2}{6e^{2t}}
\]
Simplify:
\[
= \frac{3e^{3t} (e^{2t} + 1)^2}{6e^{2t}} = \frac{3}{6} e^{3t – 2t} (e^{2t} + 1)^2 = \frac{1}{2} e^t (e^{2t} + 1)^2
\]

So, the expression is:
\[
\frac{dy}{dx} = \frac{1}{2} e^t (e^{2t} + 1)^2
\]

Part (b): Find the gradient where the curve crosses the y-axis
The curve crosses the y-axis when \(x = 0\). Solve for \(t\):
\[
x = \frac{e^{2t} – 2}{e^{2t} + 1} = 0
\]
Numerator = 0:
\[
e^{2t} – 2 = 0 \quad \Rightarrow \quad e^{2t} = 2
\]
\[
2t = \ln 2 \quad \Rightarrow \quad t = \frac{\ln 2}{2}
\]

Now, find the gradient \(\frac{dy}{dx}\) at \(t = \frac{\ln 2}{2}\):
\[
\frac{dy}{dx} = \frac{1}{2} e^t (e^{2t} + 1)^2
\]
Substitute \(t = \frac{\ln 2}{2}\):
\(e^t = e^{\frac{\ln 2}{2}} = 2^{1/2} = \sqrt{2}\)
\(e^{2t} = e^{\ln 2} = 2\)
\(e^{2t} + 1 = 2 + 1 = 3\)
\((e^{2t} + 1)^2 = 3^2 = 9\)

\[
\frac{dy}{dx} = \frac{1}{2} \cdot \sqrt{2} \cdot 9 = \frac{9 \sqrt{2}}{2}
\]

Final Answer:
(a) \(\frac{dy}{dx} = \frac{1}{2} e^t (e^{2t} + 1)^2\)
(b) Gradient at the y-axis = \(\frac{9 \sqrt{2}}{2}\)

Question 7

(a) Topic-2.3 – Trigonometry

(b) Topic-2.3 – Trigonometry

(c) Topic-2.3 – Trigonometry

(a) Prove that $cos(\theta+30^{\circ})cos(\theta+60^{\circ})\equiv\frac{1}{4}\sqrt{3}-\frac{1}{2}sin~2\theta.$

(b) Solve the equation $5~cos(2\alpha+30^{\circ})cos(2\alpha+60^{\circ})=1$ for $0^{\circ}<\alpha<90^{\circ}$.

(c) Show that the exact value of $cos~20^{\circ}cos~50^{\circ}+cos~40^{\circ}cos~70^{\circ}$ is $\frac{1}{2}\sqrt{3}$.

▶️Answer/Explanation

Part (a): Prove the identity

We need to show:
\[
\cos(\theta + 30^\circ) \cos(\theta + 60^\circ) \equiv \frac{1}{4}\sqrt{3} – \frac{1}{2} \sin 2\theta
\]

Use the product-to-sum identity: \(\cos A \cos B = \frac{1}{2} [\cos(A + B) + \cos(A – B)]\).

\(A = \theta + 30^\circ\), \(B = \theta + 60^\circ\)
\(A + B = (\theta + 30^\circ) + (\theta + 60^\circ) = 2\theta + 90^\circ\)
\(A – B = (\theta + 30^\circ) – (\theta + 60^\circ) = -30^\circ\)

So:
\[
\cos(\theta + 30^\circ) \cos(\theta + 60^\circ) = \frac{1}{2} [\cos(2\theta + 90^\circ) + \cos(-30^\circ)]
\]

\(\cos(-30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}\) (since cosine is even)
\(\cos(2\theta + 90^\circ) = -\sin 2\theta\) (since \(\cos(x + 90^\circ) = -\sin x\))

Substitute:
\[
\frac{1}{2} [-\sin 2\theta + \cos 30^\circ] = \frac{1}{2} [-\sin 2\theta + \frac{\sqrt{3}}{2}] = -\frac{1}{2} \sin 2\theta + \frac{1}{4} \sqrt{3}
\]

This matches the right side, so the identity holds.

Part (b): Solve the equation
\[
5 \cos(2\alpha + 30^\circ) \cos(2\alpha + 60^\circ) = 1, \quad 0^\circ < \alpha < 90^\circ
\]

From (a), we know:
\[
\cos(2\alpha + 30^\circ) \cos(2\alpha + 60^\circ) = \frac{1}{4} \sqrt{3} – \frac{1}{2} \sin 2(2\alpha) = \frac{1}{4} \sqrt{3} – \frac{1}{2} \sin 4\alpha
\]

Substitute:
\[
5 \left( \frac{1}{4} \sqrt{3} – \frac{1}{2} \sin 4\alpha \right) = 1
\]

Simplify:
\[
\frac{5}{4} \sqrt{3} – \frac{5}{2} \sin 4\alpha = 1
\]

Isolate \(\sin 4\alpha\):
\[
\frac{5}{2} \sin 4\alpha = 1 – \frac{5}{4} \sqrt{3}
\]
\[
\sin 4\alpha = \frac{\frac{5}{4} \sqrt{3} – 1}{\frac{5}{2}} = \frac{5 \sqrt{3} – 4}{10}
\]

Since \(0^\circ < \alpha < 90^\circ\), \(4\alpha\) ranges from \(0^\circ\) to \(360^\circ\). Solve:
\[
4\alpha = \arcsin\left( \frac{5 \sqrt{3} – 4}{10} \right) \quad \text{or} \quad 4\alpha = 180^\circ – \arcsin\left( \frac{5 \sqrt{3} – 4}{10} \right)
\]

Compute \(k = \frac{5 \sqrt{3} – 4}{10}\):
\(\sqrt{3} \approx 1.732\), \(5 \sqrt{3} \approx 8.66\), \(5 \sqrt{3} – 4 \approx 4.66\), \(k \approx 0.466\)
\(\arcsin(0.466) \approx 27.8^\circ\)
\(180^\circ – 27.8^\circ = 152.2^\circ\)

So:
\(4\alpha = 27.8^\circ\) \(\Rightarrow\) \(\alpha = 6.95^\circ\)
\(4\alpha = 152.2^\circ\) \(\Rightarrow\) \(\alpha = 38.05^\circ\)

Both are within \(0^\circ < \alpha < 90^\circ\).

Part (c): Show the exact value
We need:
\[
\cos 20^\circ \cos 50^\circ + \cos 40^\circ \cos 70^\circ = \frac{1}{2} \sqrt{3}
\]

Use the identity from (a) twice:
For \(\cos 20^\circ \cos 50^\circ\), let \(\theta = 20^\circ\):
\[
\cos(20^\circ + 30^\circ) \cos(20^\circ + 60^\circ) = \cos 50^\circ \cos 80^\circ = \frac{1}{4} \sqrt{3} – \frac{1}{2} \sin 40^\circ
\]
For \(\cos 40^\circ \cos 70^\circ\), let \(\theta = 40^\circ\):
\[
\cos(40^\circ + 30^\circ) \cos(40^\circ + 60^\circ) = \cos 70^\circ \cos 100^\circ = \frac{1}{4} \sqrt{3} – \frac{1}{2} \sin 80^\circ
\]

But we adjust pairs. Notice the sum:
\[
\cos 20^\circ \cos 50^\circ + \cos 40^\circ \cos 70^\circ
\]
Test the identity directly using \(\cos A \cos B\):
\(\cos 50^\circ \cos 80^\circ = \frac{1}{4} \sqrt{3} – \frac{1}{2} \sin 40^\circ\)
\(\cos 70^\circ \cos 100^\circ = \frac{1}{4} \sqrt{3} – \frac{1}{2} \sin 80^\circ\)

Instead, pair differently or compute:
\[
\cos 20^\circ \cos 50^\circ = \frac{1}{2} [\cos 70^\circ + \cos(-30^\circ)] = \frac{1}{2} [\cos 70^\circ + \frac{\sqrt{3}}{2}]
\]
\[
\cos 40^\circ \cos 70^\circ = \frac{1}{2} [\cos 110^\circ + \cos 30^\circ] = \frac{1}{2} [-\cos 70^\circ + \frac{\sqrt{3}}{2}]
\]

Add:
\[
\frac{1}{2} [\cos 70^\circ + \frac{\sqrt{3}}{2}] + \frac{1}{2} [-\cos 70^\circ + \frac{\sqrt{3}}{2}] = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2}
\]

Final Answer:
(a) Proven using \(\cos A \cos B = \frac{1}{2} [\cos(A + B) + \cos(A – B)]\).
(b) \(\alpha = 6.95^\circ, 38.05^\circ\)
(c) Value is \(\frac{1}{2} \sqrt{3}\), shown by simplifying the sum.

Scroll to Top