Home / CIE AS & A Level / CIE AS & A Level Math 9709 / CIE AS/A Level Maths-1.5 Trigonometry- Study Notes

CIE AS/A Level Maths-1.5 Trigonometry- Study Notes- New Syllabus - 2026-2027

CIE AS/A Level Maths-1.5 Trigonometry- Study Notes- New Syllabus

Ace AS/A Level Maths Exam with CIE AS/A Level Maths-1.5 Trigonometry- Study Notes

Key Concepts:

  • Graphs of Sine, Cosine and Tangent Functions
  • Exact Values of Standard Angles
  • Inverse Trigonometric Functions and Principal Values
  • Fundamental Trigonometric Identities
  • Solving Simple Trigonometric Equations in a Specified Interval

AS & A Level Maths Study Notes– All Topics

Graphs of Sine, Cosine and Tangent Functions

Graphs of Sine, Cosine and Tangent Functions

1. Basic Sine Function \(y = \sin x\)

  

  • Domain: all real numbers.
  • Range: \([-1, 1]\).
  • Period: \(360^\circ\) or \(2\pi \ \text{radians}\).
  • Passes through the origin: \((0,0)\).

2. Basic Cosine Function \(y = \cos x\)

  • Domain: all real numbers.
  • Range: \([-1, 1]\).
  • Period: \(360^\circ\) or \(2\pi \ \text{radians}\).
  • Starts at \((0,1)\).

3. Basic Tangent Function \(y = \tan x\)

  • Domain: all real numbers except where \(\cos x = 0\) (i.e., \(90^\circ, 270^\circ\) or \(\dfrac{\pi}{2}, \dfrac{3\pi}{2}, \dots\)).
  • Range: all real numbers.
  • Period: \(180^\circ\) or \(\pi \ \text{radians}\).
  • Passes through \((0,0)\).

Transformations of Trigonometric Graphs

General forms:

  • \(y = a \sin x\) or \(y = a \cos x\) → vertical stretch by factor \(|a|\).
  • \(y = \sin (bx)\) or \(y = \cos (bx)\) → period changes to \(\dfrac{360^\circ}{b}\) or \(\dfrac{2\pi}{b}\).
  • \(y = \sin(x + c)\) or \(y = \cos(x + c)\) → horizontal shift (phase shift) of \(-c\).
  • \(y = \sin x + d\) or \(y = \cos x + d\) → vertical shift by \(d\).

Example:

Sketch the graph of \(y = 3 \sin x\) for \(0 \leq x \leq 360^\circ\).

▶️ Answer/Explanation

Step 1: Recall basic sine curve

The basic sine curve oscillates between \(-1\) and \(1\).

Step 2: Apply amplitude change

Since the coefficient is \(3\), the curve will now oscillate between \(-3\) and \(3\).

Step 3: Key points

  • \(x = 0^\circ, y = 0\)
  • \(x = 90^\circ, y = 3\)
  • \(x = 180^\circ, y = 0\)
  • \(x = 270^\circ, y = -3\)
  • \(x = 360^\circ, y = 0\)

Final Sketch: Standard sine wave but stretched vertically with amplitude \(3\).

 

Example:

Sketch the graph of \(y = 1 – \cos(2x)\) for \(0 \leq x \leq 360^\circ\).

▶️ Answer/Explanation

Step 1: Recall basic cosine curve

Cosine starts at \(1\), goes down to \(-1\), then returns to \(1\).

Step 2: Apply transformation inside function

Since it is \(\cos(2x)\), the period becomes \(\dfrac{360^\circ}{2} = 180^\circ\).

Step 3: Apply vertical transformation

The graph is shifted because of \(1 – \cos(2x)\): subtracting flips cosine and adds a vertical shift of \(+1\).

Step 4: Key points

  • \(x = 0^\circ, y = 0\)
  • \(x = 45^\circ, y = 1 – \cos(90^\circ) = 1\)
  • \(x = 90^\circ, y = 1 – \cos(180^\circ) = 2\)
  • \(x = 180^\circ, y = 0\)
  • \(x = 360^\circ, y = 0\)

Final Sketch: A wave oscillating between \(0\) and \(2\), with period \(180^\circ\).

Example:

Sketch the graph of \(y = \tan\left(x + \dfrac{\pi}{4}\right)\) for \(-\pi \leq x \leq \pi\).

▶️ Answer/Explanation

Step 1: Recall tangent curve

The basic \(\tan x\) has asymptotes at \(x = \pm \dfrac{\pi}{2}, \pm \dfrac{3\pi}{2}, \dots\).

Step 2: Apply horizontal shift

\(y = \tan(x + \dfrac{\pi}{4})\) means a shift of \(-\dfrac{\pi}{4}\) to the left.

Step 3: New asymptotes

Original asymptotes: \(x = -\dfrac{\pi}{2}, \dfrac{\pi}{2}\). After shift: \(x = -\dfrac{\pi}{2} – \dfrac{\pi}{4} = -\dfrac{3\pi}{4}\), and \(x = \dfrac{\pi}{2} – \dfrac{\pi}{4} = \dfrac{\pi}{4}\).

Step 4: Key point

At \(x = -\dfrac{\pi}{4}\), \(y = \tan(0) = 0\).

Final Sketch: Tangent curve shifted left by \(\dfrac{\pi}{4}\), asymptotes at \(-\dfrac{3\pi}{4}\) and \(\dfrac{\pi}{4}\).

Exact Values of Standard Angles

Exact Values of Standard Angles

AngleRadians\(\sin \theta\)\(\cos \theta\)\(\tan \theta\)
0010
30°\(\dfrac{\pi}{6}\)\(\dfrac{1}{2}\)\(\dfrac{\sqrt{3}}{2}\)\(\dfrac{1}{\sqrt{3}}\)
45°\(\dfrac{\pi}{4}\)\(\dfrac{1}{\sqrt{2}}\)\(\dfrac{1}{\sqrt{2}}\)1
60°\(\dfrac{\pi}{3}\)\(\dfrac{\sqrt{3}}{2}\)\(\dfrac{1}{2}\)\(\sqrt{3}\)
90°\(\dfrac{\pi}{2}\)10Not defined

Using Related Angles (Unit Circle Symmetry)

  • In Quadrant I, all trignometric ratios are positive.
  • In Quadrant II, sine is positive, cosine and tangent are negative.
  • In Quadrant III, tangent is positive, sine and cosine are negative.
  • In Quadrant IV, cosine is positive, sine and tangent are negative.

Thus:

  • \(\cos 150^\circ = -\dfrac{\sqrt{3}}{2}\) (since reference angle is \(30^\circ\), cos is negative in Quadrant II).
  • \(\sin \dfrac{3\pi}{4} = \sin 135^\circ = \dfrac{1}{\sqrt{2}}\).
  • \(\tan 225^\circ = 1\), since tangent is positive in Quadrant III with reference \(45^\circ\).

Example:

Find the exact values of \(\sin 120^\circ\), \(\cos 225^\circ\), and \(\tan 300^\circ\).

▶️ Answer/Explanation

Step 1: Identify reference angles

  • \(120^\circ = 180^\circ – 60^\circ \) → reference angle \(60^\circ\).
  • \(225^\circ = 180^\circ + 45^\circ \) → reference angle \(45^\circ\).
  • \(300^\circ = 360^\circ – 60^\circ \) → reference angle \(60^\circ\).

Step 2: Apply quadrant signs

  • Quadrant II → sine positive: \(\sin 120^\circ = \sin 60^\circ = \dfrac{\sqrt{3}}{2}\).
  • Quadrant III → cosine negative: \(\cos 225^\circ = -\cos 45^\circ = -\dfrac{1}{\sqrt{2}}\).
  • Quadrant IV → tangent negative: \(\tan 300^\circ = -\tan 60^\circ = -\sqrt{3}\).

Final Answers:

  • \(\sin 120^\circ = \dfrac{\sqrt{3}}{2}\)
  • \(\cos 225^\circ = -\dfrac{1}{\sqrt{2}}\)
  • \(\tan 300^\circ = -\sqrt{3}\)

Example:

Find the exact values of \(\cos 240^\circ\), \(\sin \dfrac{7\pi}{6}\), and \(\tan 135^\circ\).

▶️ Answer/Explanation

Step 1: Identify reference angles

  • \(240^\circ = 180^\circ + 60^\circ\) → reference angle \(60^\circ\).
  • \(\dfrac{7\pi}{6} = 210^\circ = 180^\circ + 30^\circ\) → reference angle \(30^\circ\).
  • \(135^\circ = 180^\circ – 45^\circ\) → reference angle \(45^\circ\).

Step 2: Apply quadrant signs

  • Quadrant III → cosine negative: \(\cos 240^\circ = -\cos 60^\circ = -\dfrac{1}{2}\).
  • Quadrant III → sine negative: \(\sin \dfrac{7\pi}{6} = -\sin 30^\circ = -\dfrac{1}{2}\).
  • Quadrant II → tangent negative: \(\tan 135^\circ = -\tan 45^\circ = -1\).

Final Answers:

  • \(\cos 240^\circ = -\dfrac{1}{2}\)
  • \(\sin \dfrac{7\pi}{6} = -\dfrac{1}{2}\)
  • \(\tan 135^\circ = -1\)

Inverse Trigonometric Functions and Principal Values

Inverse Trigonometric Functions and Principal Values

We use the notations \(\sin^{-1}x\), \(\cos^{-1}x\), and \(\tan^{-1}x\) to denote the principal values of the inverse trigonometric functions. These are defined with restricted ranges so that each inverse is a single-valued function.

Sine inverse:

\(\sin^{-1}x = \theta \quad \Rightarrow \quad \sin \theta = x, \; -1 \leq x \leq 1, \; \theta \in \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\).

 

Cosine inverse:

\(\cos^{-1}x = \theta \quad \Rightarrow \quad \cos \theta = x, \; -1 \leq x \leq 1, \; \theta \in [0, \pi]\).

Tangent inverse:

\(\tan^{-1}x = \theta \quad \Rightarrow \quad \tan \theta = x, \; -\infty < x < \infty, \; \theta \in \left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right)\).

Important: The ranges are chosen so that each function is one-to-one and hence invertible.

Example:

Evaluate \(\sin^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)\).

▶️ Answer/Explanation

Step 1: Recall definition

\(\sin^{-1}x\) gives the angle \(\theta \in \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\) such that \(\sin \theta = x\).

Step 2: Identify value

\(\sin \theta = -\dfrac{\sqrt{3}}{2} \implies \theta = -\dfrac{\pi}{3}\) (since it must lie in the range \([-90^\circ, 90^\circ]\)).

Answer: \(\sin^{-1}\left(-\dfrac{\sqrt{3}}{2}\right) = -\dfrac{\pi}{3}\).

Example:

Evaluate \(\cos^{-1}\left(-\dfrac{1}{2}\right)\).

▶️ Answer/Explanation

Step 1: Recall definition

\(\cos^{-1}x\) gives the angle \(\theta \in [0, \pi]\) such that \(\cos \theta = x\).

Step 2: Identify value

\(\cos \theta = -\dfrac{1}{2} \implies \theta = \dfrac{2\pi}{3}\).

Answer: \(\cos^{-1}\left(-\dfrac{1}{2}\right) = \dfrac{2\pi}{3}\).

Example:

Evaluate \(\tan^{-1}(-1)\).

▶️ Answer/Explanation

Step 1: Recall definition

\(\tan^{-1}x\) gives the angle \(\theta \in \left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right)\) such that \(\tan \theta = x\).

Step 2: Identify value

\(\tan \theta = -1 \implies \theta = -\dfrac{\pi}{4}\).

Answer: \(\tan^{-1}(-1) = -\dfrac{\pi}{4}\).

Fundamental Trigonometric Identities

Fundamental Trigonometric Identities

Two of the most important trigonometric identities are:

1. \(\tan x = \dfrac{\sin x}{\cos x}, \quad \cos x \neq 0\)

2. \(\sin^2 x + \cos^2 x = 1\)

These identities are frequently used to:

  • Prove other trigonometric identities
  • Simplify trigonometric expressions
  • Solve trigonometric equations

Example:

Prove that \(\dfrac{1 – \cos^2 x}{\cos x} = \tan x \sin x\).

▶️ Answer/Explanation

Step 1: Start with the left-hand side (LHS)

\(\dfrac{1 – \cos^2 x}{\cos x}\).

Step 2: Use Pythagoras identity

\(1 – \cos^2 x = \sin^2 x\).

LHS = \(\dfrac{\sin^2 x}{\cos x}\).

Step 3: Rewrite using \(\tan x\)

\(\dfrac{\sin^2 x}{\cos x} = \sin x \cdot \dfrac{\sin x}{\cos x} = \sin x \cdot \tan x\).

Answer: LHS = RHS, hence proven

Example : 

Simplify: \(\dfrac{\tan^2 x + 1}{\sec^2 x}\).

▶️ Answer/Explanation

Step 1: Recall identities

\(\tan^2 x + 1 = \sec^2 x\).

Step 2: Substitute

\(\dfrac{\tan^2 x + 1}{\sec^2 x} = \dfrac{\sec^2 x}{\sec^2 x} = 1\).

Answer: Simplified expression = 1 

Example :

Solve for \(0 \leq x \leq 2\pi\): \(\sin^2 x = \cos^2 x\).

▶️ Answer/Explanation

Step 1: Rewrite equation

\(\sin^2 x = \cos^2 x \implies \dfrac{\sin^2 x}{\cos^2 x} = 1\).

\(\tan^2 x = 1\).

Step 2: Solve

\(\tan x = \pm 1\).

So \(x = \dfrac{\pi}{4}, \dfrac{3\pi}{4}, \dfrac{5\pi}{4}, \dfrac{7\pi}{4}\).

Answer: \(x = \dfrac{\pi}{4}, \dfrac{3\pi}{4}, \dfrac{5\pi}{4}, \dfrac{7\pi}{4}\).

Solving Simple Trigonometric Equations in a Specified Interval

Solving Simple Trigonometric Equations in a Specified Interval

When solving equations involving sine, cosine, or tangent, we often look for solutions only within a given interval, such as \(0 \leq x \leq 2\pi\) or \(0^\circ \leq \theta \leq 360^\circ\).

Steps to Solve:

  1. Isolate the trigonometric function (sin, cos, tan).
  2. Find the principal solution using inverse functions (\(\sin^{-1}, \cos^{-1}, \tan^{-1}\)).
  3. Determine all other solutions within the interval using the symmetry of the trig graph (CAST rule / unit circle).
  4. Write the complete set of solutions in the specified interval.

Example:

Solve for \(0 \leq x \leq 2\pi\): \(\sin x = \dfrac{\sqrt{3}}{2}\).

▶️ Answer/Explanation

Step 1: Principal solution

\(\sin^{-1}\left(\dfrac{\sqrt{3}}{2}\right) = \dfrac{\pi}{3}\).

Step 2: Other solutions

Sine is positive in Quadrant I and II.

So solutions are \(x = \dfrac{\pi}{3}, \; \pi – \dfrac{\pi}{3} = \dfrac{2\pi}{3}\).

Answer: \(x = \dfrac{\pi}{3}, \dfrac{2\pi}{3}\).

Example:

Solve for \(0^\circ \leq \theta \leq 360^\circ\): \(\cos \theta = -\dfrac{1}{2}\).

▶️ Answer/Explanation

Step 1: Principal solution

\(\cos^{-1}\left(\dfrac{1}{2}\right) = 60^\circ\).

Step 2: Adjust for negative cosine

Cosine is negative in Quadrant II and III.

So solutions are \(\theta = 180^\circ – 60^\circ = 120^\circ\), and \(\theta = 180^\circ + 60^\circ = 240^\circ\).

Answer: \(\theta = 120^\circ, 240^\circ\).

Example:

Solve for \(0 \leq x \leq 2\pi\): \(\tan x = 1\).

▶️ Answer/Explanation

Step 1: Principal solution

\(\tan^{-1}(1) = \dfrac{\pi}{4}\).

Step 2: Other solutions

Tangent is positive in Quadrant I and III.

So solutions are \(x = \dfrac{\pi}{4}, \; \pi + \dfrac{\pi}{4} = \dfrac{5\pi}{4}\).

Answer: \(x = \dfrac{\pi}{4}, \dfrac{5\pi}{4}\).

Scroll to Top