Home / AP Calculus AB: 1.14 Connecting Infinite Limits and Vertical  Asymptotes – Exam Style questions with Answer- MCQ

AP Calculus AB: 1.14 Connecting Infinite Limits and Vertical  Asymptotes – Exam Style questions with Answer- MCQ

Question

A -2

B 0

C 2

D nonexistent

▶️Answer/Explanation

Ans:B

The numerator of \(\frac{10-6x^{2}}{5+3e^{x}}\)  is a translated power function and the denominator is a translated exponential function. Since the exponential function \(e^{x}\) grows faster than the power function \(x^{2}\) , the relative magnitude of the denominator compared to the numerator will result in this expression converging to 0

0

 as x

x

 goes to infinity.

Question

The graph of which of the following equations has  y =1  as an asymptote?

(A) y =  lnx             (B)  y= sinx              (C)\(y=\frac{x}{x+1}\)                         (D)\(\frac{x^{2}}{x-1}\)                      (E)\(y=e^{-x}\)

▶️Answer/Explanation

Ans:C

Question

The graph of a function f is shown above. If  

g

is the function defined by \( g(x)=\frac{x^{2}+1}{f(x)}\),what is the value of g(2)?

A \(-\frac{8}{9}\)

B \(\frac{1}{9}\)

C 1

D \(\frac{32}{9}\)

▶️Answer/Explanation

Ans:A

The derivative of g

g

 is found using the quotient rule.

\(g'(x)=\frac{2xf(x)-f'(x)(x^{2}+1)}{(f(x))^{2}}\)

The graph of f is used to determine that f(2)=3 and \(f'(2)=\frac{7-3}{3-2}=4\)Then  \(g'(2)=\frac{4f(2)-f'(2)(5)}{(f(2))^{2}}=\frac{4(3)-4(5)}{9}=-\frac{8}{9}\)

Question

A -2

B 4

C 12

D 18

▶️Answer/Explanation

Ans:A

Scroll to Top