Home / AP Calculus AB 1.7 Selecting Procedures for Determining Limits

AP Calculus AB 1.7 Selecting Procedures  for Determining Limits – Exam Style questions with Answer- FRQ

Question

Let \( f \) be the function given by \( f(x) = 2xe^{2x} \).

(a) Find \(\lim_{x \to -\infty} f(x)\) and \(\lim_{x \to \infty} f(x)\).

(b) Find the absolute minimum value of \( f \). Justify that your answer is an absolute minimum.

(c) What is the range of \( f \)?

(d) Consider the family of functions defined by \( y = bxe^{bx} \), where \( b \) is a nonzero constant. Show that the absolute minimum value of \( bxe^{bx} \) is the same for all nonzero values of \( b \).

▶️ Answer/Explanation

Solution

(a)

\(\lim_{x \to -\infty} 2xe^{2x} = 0\) (exponential decay dominates linear growth).

\(\lim_{x \to \infty} 2xe^{2x} = \infty\) (exponential growth dominates linear growth).

(b)

First, find the derivative:

\( f'(x) = 2e^{2x} + 4xe^{2x} = 2e^{2x}(1 + 2x) \).

Set \( f'(x) = 0 \):

\( 2e^{2x}(1 + 2x) = 0 \implies x = -\frac{1}{2} \) (since \( e^{2x} \) is never zero).

Evaluate \( f \) at the critical point:

\( f\left(-\frac{1}{2}\right) = 2 \left(-\frac{1}{2}\right) e^{2 \left(-\frac{1}{2}\right)} = -e^{-1} = -\frac{1}{e} \).

This is the absolute minimum because:

  • For \( x < -\frac{1}{2} \), \( f'(x) < 0 \) (function is decreasing).
  • For \( x > -\frac{1}{2} \), \( f'(x) > 0 \) (function is increasing).

(c)

The range of \( f \) is \( \left[-\frac{1}{e}, \infty\right) \).

(d)

For \( y = bxe^{bx} \), find the derivative:

\( y’ = be^{bx} + b^2xe^{bx} = be^{bx}(1 + bx) \).

Set \( y’ = 0 \):

\( be^{bx}(1 + bx) = 0 \implies x = -\frac{1}{b} \).

Evaluate \( y \) at the critical point:

\( y\left(-\frac{1}{b}\right) = b \left(-\frac{1}{b}\right) e^{b \left(-\frac{1}{b}\right)} = -e^{-1} = -\frac{1}{e} \).

Thus, the absolute minimum value is \(-\frac{1}{e}\) for all nonzero \( b \).

Scroll to Top