Home / AP Calculus AB: 2.6 Derivative Rules: Constant, Sum, Difference, and Constant Multiple – Exam Style questions with Answer- MCQ

AP Calculus AB: 2.6 Derivative Rules: Constant, Sum, Difference, and Constant Multiple – Exam Style questions with Answer- MCQ

Question

The graph of the function f, consisting of two line segments, is shown below.

Graph of f

Let \( g(x) = 2x + 1 \), and let \( h(x) = f(g(x)) \). What is the value of \( h'(1) \)?

A) -4
B) -2
C) 4
D) 6
E) nonexistent

▶️ Answer/Explanation

Solution

Correct Answer: A

Step 1: Use the chain rule: \( h(x) = f(g(x)) \Rightarrow h'(x) = f'(g(x)) \cdot g'(x) \)
Step 2: Evaluate \( g(1) \):
\[ g(1) = 2(1) + 1 = 3 \]
Step 3: Compute the slope of \( f(x) \) at \( x = 3 \). The segment from (1, 4) to (4, -2) has a slope of:
\[ \frac{-2 – 4}{4 – 1} = \frac{-6}{3} = -2 \Rightarrow f'(3) = -2 \]
Step 4: Compute \( h'(1) = f'(g(1)) \cdot g'(1) = f'(3) \cdot 2 = -2 \cdot 2 = -4 \)

Question

Evaluate \(\frac{d}{dx}\left(\frac{1}{x^{3}} – \frac{1}{x + x^{2}}\right)\) at \(x = 1\)

A) -6
B) -1.5
C) 0
D) 2
E) 6

▶️ Answer/Explanation

Solution

Correct Answer: B

Step 1: Rewrite the function: \[ f(x) = x^{-3} – \frac{1}{x + x^2} \] Step 2: Differentiate each term: \[ \frac{d}{dx}(x^{-3}) = -3x^{-4} \] \[ \frac{d}{dx}\left(\frac{1}{x + x^2}\right) = -\frac{1 + 2x}{(x + x^2)^2} \] Step 3: Combine derivatives: \[ f'(x) = -3x^{-4} + \frac{1 + 2x}{(x + x^2)^2} \] Step 4: Evaluate at \(x = 1\): \[ f'(1) = -3(1)^{-4} + \frac{1 + 2(1)}{(1 + 1^2)^2} = -3 + \frac{3}{4} = -\frac{9}{4} + \frac{3}{4} = -\frac{6}{4} = -1.5 \]

Question

Given \( y = \frac{1}{2}x^{4/5} – \frac{3}{x^5} \), find \(\frac{dy}{dx}\)

A) \( \frac{2}{5x^{1/5}} + \frac{15}{x^6} \)
B) \( \frac{2}{5x^{1/5}} + \frac{15}{x^4} \)
C) \( \frac{2}{5x^{1/5}} – \frac{3}{5x^4} \)
D) \( \frac{2x^{1/5}}{5} + \frac{15}{x^6} \)
E) \( \frac{2x^{1/5}}{5} – \frac{3}{5x^4} \)

▶️ Answer/Explanation

Solution

Correct Answer: A

Step 1: Differentiate the first term: \[ \frac{d}{dx}\left(\frac{1}{2}x^{4/5}\right) = \frac{1}{2} \cdot \frac{4}{5}x^{-1/5} = \frac{2}{5x^{1/5}} \] Step 2: Differentiate the second term: \[ \frac{d}{dx}\left(-3x^{-5}\right) = 15x^{-6} = \frac{15}{x^6} \] Step 3: Combine the derivatives: \[ \frac{dy}{dx} = \frac{2}{5x^{1/5}} + \frac{15}{x^6} \]

Question

Let \( f(x) = bx^2 – 13bx + b^2 + \frac{1}{x^2} \), where \( b \) is a nonzero constant. Which of the following is an expression for \( f'(x) \)?

A) \( 2bx + 3b – \frac{2}{x} \)
B) \( 2bx -13b – \frac{2}{x^3} \)
C) \( 2bx + 3b + b^2 – \frac{2}{x^3} \)
D) \( x^2 + 3x + b \)

▶️ Answer/Explanation

Solution

Correct Answer: B

Step 1: Rewrite the function in simpler form:
\( f(x) = bx^2 – 13bx + b^2 + x^{-2} \)

Step 2: Differentiate term by term:
\( \frac{d}{dx}(bx^2) = 2bx \)
\( \frac{d}{dx}(-13bx) = -13b \)
\( \frac{d}{dx}(b^2) = 0 \) (since it’s a constant)
\( \frac{d}{dx}(x^{-2}) = -2x^{-3} = -\frac{2}{x^3} \)

Step 3: Combine the results:
\( f'(x) = 2bx – 13b – \frac{2}{x^3} \)

Scroll to Top