AP Calculus AB: 3.1 The Chain Rule – Exam Style questions with Answer- FRQ

Question:

Consider the function y = f (x) whose curve is given by the equation 2y2 − 6 = y sin x for y > 0.
(a) Show that \(\frac{dy}{dx}=\frac{ycos x}{4y-sin x}.\)
(b) Write an equation for the line tangent to the curve at the point (0, \(\sqrt{3}\) ).
(c) For 0 ≤ x ≤ π and y > 0, find the coordinates of the point where the line tangent to the curve is horizontal.
(d) Determine whether f has a relative minimum, a relative maximum, or neither at the point found in part (c). Justify your answer.

▶️Answer/Explanation

Ans:

(a)

2y2-6 = y sin x

4y y’ = y cos x + y’ sin x

4y y’ – y’ sin x = y cos x

y'(4y-sinx) = y cos x

\(y’ = \frac{ycos x}{4y-sinx}\)

\(\frac{dy}{dx} = \frac{ycos x}{4y-sinx}\)

(b)

\(\frac{dy}{dx}At (0,\sqrt{3})=\frac{\sqrt{3}cos(0)}{4\sqrt{3}-sin(0)}=\frac{\sqrt{3}(1)}{4\sqrt{3}-(0)}=\frac{\sqrt{3}}{4\sqrt{3}}=\frac{1}{4}\)

\(y-\sqrt{3}=\frac{1}{4}(x-0)\)

(c)

2y2 – 6 = y sin x

\(\frac{dy}{dx}=\frac{ycos x}{4y – sinx}\)       y ≠0 : -6 = 0 sinx

\(0=\frac{ycos x}{4y – sinx}\)

                                                                                                      \(x = \frac{\pi }{2}: 2y^{2}-6=y sin(\frac{\pi }{2})\)

                                                                                                        \(2y^{2}-6=y (x)\)

0 = y cos x                                                                                      2y2 – y-6 =0

y ≠ 0     x ≠ 0                                                                                 (2y + 3) (y – 2) = 0

                                       Since

0 = y cos x               cos (0) = 1                                                       y = 2                      2y + 3 = 0

x = π/2                             and                                                                                             2y = -3

                                         0 ≠ 1                                          

f(x) has a horizontal tangent at \(\left ( \frac{\pi }{2},2 \right )\)

(d)

Since \(\frac{d^{2}y}{dx^{2}}<0\)   at \(\left ( \frac{\pi }{2},2 \right )\), f has a relative maximum at that point.

\(\frac{dy}{dx}=\frac{y cos x}{4y-sin x}\)

\(\frac{d^{2}y}{dx^{2}} = \frac{(4y-sinx)\left [ y(-sinx)+y’cos x \right ]-(y cos x)(4y’-cosx)}{(4y-sin x)^{2}}\)

At \(\left ( \frac{\pi }{2},2 \right )\) : \(\frac{d^{2}y}{dx^{2}} = \frac{(4.2-1)\left [ 2(-1)+0 cos x \right ]-(2(0))(4(0)-0)}{(4(2)-1)^{2}}\)

\(\frac{d^{2}y}{dx^{2}} = \frac{(8-1)(-2)}{(8-1)^{2}}=\frac{7(-2)}{7}=\frac{-2}{7}\)

                                                                                                            concave down

Scroll to Top