Home / AP Calculus AB: 3.4 Differentiating Inverse Trigonometric  Functions – Exam Style questions with Answer- MCQ

AP Calculus AB: 3.4 Differentiating Inverse Trigonometric  Functions – Exam Style questions with Answer- MCQ

Question

What is the slope of the line tangent to the curve y=arctan(4x) at the point at which  \(x=\frac{1}{4}\):

A 2

B \(\frac{1}{2}\)

C 0

D \(-\frac{1}{2}\)

E -2

▶️Answer/Explanation

Ans:A

Question

\(\frac{\mathrm{d} }{\mathrm{d} x}(\tan ^{-1}(3x))\)=

A \(3\sec ^{2}(3x)\)

B \(-3\csc ^{2}(3x)\)

C \(\frac{3}{\sqrt{1-(3x)^{2}}}\)

D \(\frac{3}{1+(3x)^{2}}\)

▶️Answer/Explanation

Ans:D

Question

If \(f(x)=\arcsin x\),then \(\lim_{x\rightarrow \frac{1}{2}}\frac{f(x)-f(\frac{1}{2})}{x-\frac{1}{2}}\) is

A 0

B  \(\frac{\pi }{6}\)

C \(\frac{\sqrt{3}}{2}\)

D nonexistent

▶️Answer/Explanation

Ans:C

The expression in the limit is the definition of the derivative of arcsin

x

at \(x=\frac{1}{2}\).The value of the limit is therefore \(\frac{\mathrm{d} }{\mathrm{d} x}\arcsin x|_{x=\frac{1}{2}}=\frac{1}{\sqrt{1-x^{2}}}|_{x=\frac{1}{2}}=\frac{1}{\sqrt{\frac{3}{4}}}=\frac{2}{\sqrt{3}}\)

Question

If which of the following could be the value of a?

A \(\frac{\sqrt{2}}{2}\)

B \(\frac{\sqrt{3}}{2}\)

C \(\sqrt{3}\)

D \(\frac{1}{2}\)

E 2

▶️Answer/Explanation

Ans:B

Scroll to Top