Home / AP Calculus AB: 3.5 Selecting Procedures for Calculating  Derivatives – Exam Style questions with Answer- MCQ

AP Calculus AB: 3.5 Selecting Procedures for Calculating  Derivatives – Exam Style questions with Answer- MCQ

Question

\(\frac{d}{dx}\left ( 2^{x} \right )\)=
(A)\(2^{x-1}\)                            (B)\((2^{x-1})\)                               (C)\((2^{x})ln2\)                             (D)\((2^{x-1})ln2\)                        (E)\(\frac{2x}{ln2}\)

▶️Answer/Explanation

Ans:C

\(\frac{d}{dx}(2^{x})=2^{x}.ln2\)

Question

\(f(x)=ln\left | x^2-1 \right |\), then \({f}'(x)\)

(A)\(\left | \frac{2x}{x^2-1} \right |\)

(B)\(\frac{2x}{|x^2-1|}\)

(C)\(\frac{2|x|}{x^2-1}\)

(D)\(\frac{2x}{x^2-1}\)

(E)\(\frac{1}{x^2-1}\)

▶️Answer/Explanation

Ans:D

\(f(x)=ln|x^2-1|;f'(x)=\frac{1}{x^2-1}.\frac{d}{dx}(x^2-1)=\frac{2x}{x^2-1}\)

Question

\(\frac{d}{dx}\left ( x^{lnx} \right )\)=
(A)\(x^{lnx}\)                (B)\((lnx)^{x}\)                       (C)\(\frac{2}{x}(lnx)x^{lnx}\)                       (D)\( (lnx) \left ( x^{lnx-1} \right )\)            (E)\(2(lnx)\left ( x^{lnx} \right )\)

▶️Answer/Explanation

Ans:C

Question

Which of the following expressions can be differentiated using the product rule?
A. \(arcsin(cosx)\)

B. \(sinx(arccosx)\)

C. \(e^x+arctanx\)

D. \((12x^2+3x−6)^e\)

▶️Answer/Explanation

Ans:B

This expression is the product of \(sinx\)   and  \(arccosx\). Therefore, differentiation of the expression requires the use of the product rule.

Scroll to Top