Home / AP Calculus AB: 3.6 Calculating Higher- Order Derivatives – Exam Style questions with Answer- MCQ

AP Calculus AB: 3.6 Calculating Higher- Order Derivatives – Exam Style questions with Answer- MCQ

Question

If \(\frac{\mathrm{d} y}{\mathrm{d} x}=x^{4}-2x^{3}+3x-1\), then \(\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}\) evaluated at x=2 is

A 11

B 24

C 26

D 125

▶️Answer/Explanation

Ans:B

Question

If \(y=e^{x^{3}}\),then \(\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}\)

A \(18x^{3}e^{x^{3}}\)

B \(9x^{4}e^{2x^{3}}\)

C \((6x+3x^{2})e^{x^{3}}\)

D \(9(6x+9x^{4})e^{x^{2}}\)

▶️Answer/Explanation

Ans:D

Question

If \(y=e^{2\sin x}\),then \(\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}\)

A \((4\cos ^{2}x)(e^{4\sin x})\)

B \((-4\sin x\cos x)(e^{2\sin x})\)

C \((-\sin x+\cos x)(2e^{2\sin x})\)

D \((-\sin x+2\cos ^{2}x)(2e^{2\sin x})\)

▶️Answer/Explanation

Ans:D

Question

If \(y=-3\cos (2x)\) , then \(\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}\)

A 12cos(2x)

B 12cos(2x)

C 3cos(2x)

D 3cos(2x)

▶️Answer/Explanation

Ans:B

The chain rule must be used twice to find the second derivative

\(\frac{\mathrm{d} Y}{\mathrm{d} x}=-3(-\sin (2x)).2\)

\(\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}=\frac{\mathrm{d} }{\mathrm{d} x}(6\sin (2x)).2=12\cos 2x\)

Scroll to Top