Home / AP Calculus AB: 5.12 Exploring Behaviors of Implicit Relations – Exam Style questions with Answer- MCQ

AP Calculus AB: 5.12 Exploring Behaviors of Implicit Relations – Exam Style questions with Answer- MCQ

Question

The point on the curve \(x^{2}+2y=0\) that is nearest the point \( \left ( 0,-\frac{1}{2} \right )\) occurs where y is

(A) \( \frac{1}{2}\)                 (B) 0                        (C)\( -\frac{1}{2}\)                         (D) −1                       (E) none of the above

▶️Answer/Explanation

Ans:B

Question

The table above gives values of the differentiable functions f and g and their derivatives at 1. x =  1 If h(x)= \((2f(x)+3)(1+g(x))\),then h'(1)

(A) -28                   (B) -16               (C) 40                   (D) 44                       (E) 47

▶️Answer/Explanation

Ans:D

Question

The functions f and g are differentiable. For all x,\( f(g(x)) =x\) and g(f(x))=x

If f(3)=8 and f'(3)=9,= what are the values of g(8)g'(8)

▶️Answer/Explanation

Ans:A

Question

The point on the curve \(x^{2}+2y=0\) that is nearest the point\( \left ( 0,-\frac{1}{2} \right )\) occurs where y is

(A)\( \frac{1}{2}\)

(B)0

(C)\(-\frac{1}{2}\)

(D)-1

(E) none of the above

▶️Answer/Explanation

Ans:B

Let L be the distance from   

\(\frac{dL}{dx}<0 \) for all x<0 and 0 for all \(\frac{dL}{dx}>0\) for all x>0 , so the minimum distance occurs at x = 0 . The nearest point is the origin.

Scroll to Top