Home / AP Calculus AB: 5.5 Using the Candidates Test to Determine Absolute (Global) Extrema – Exam Style questions with Answer- MCQ

AP Calculus AB: 5.5 Using the Candidates Test to Determine Absolute (Global) Extrema – Exam Style questions with Answer- MCQ

Question

The function g is differentiable and satisfies g(1)=4 and g(1)=2. What is the approximation of g(1.2) using the line tangent to the graph of g at x=1

A 3.6

B 3.8

C 4.2

D 4.4

▶️Answer/Explanation

Ans:A

 An equation of the line tangent to the graph of g at x=a is y=g(a)+g′(a)(x−a). In this question, a=−1. The value of y when x=−1.2 would be an approximation to g(−1.2).
g(−1.2)≈g(−1)+g′(−1)(−1.2−(−1))=4+2(−0.2)=3.6

Question

Let f be the function given by \(f(x)=x^{3}-6x^{2}-15x\). What is the maximum value of f on the interval [0,6]?

A 0

B 5

C 6

D 8

▶️Answer/Explanation

Ans:A

Question

33. The absolute maximum value of\(f(x)=x^{3}-3x^{2}+12\) on the closed interval [−2, 4] occurs at x =
(A) 4                               (B) 2                                                 (C) 1                                                 (D) 0                                                      (E) –2

▶️Answer/Explanation

Ans:A

Check the critical points and the endpoints.

\(f'(x) = 3x^2 − 6x = 3x(x − 2)\) so the critical points are 0 and 2.

Absolute maximum is at x = 4.

Question

The absolute maximum values of \(f(x)=x^{3}-3x^{2}+12\) on the closed interval [−2, 4] occurs at x =

A 4

B 2

C 1

D 0

E -2

▶️Answer/Explanation

Ans:A

Scroll to Top