Home / AP Calculus AB : 8.6 Finding the Area Between Curves That Intersect at More Than Two Points- Exam Style questions with Answer- FRQ

AP Calculus AB : 8.6 Finding the Area Between Curves That Intersect at More Than Two Points- Exam Style questions with Answer- FRQ

Question:

Let R be the region in the first quadrant enclosed by the graphs of f(x) =  8x3 and g(x) = sin(πx) , p as shown in the figure above.
(a) Write an equation for the line tangent to the graph of f at \(x = \frac{1}{2}.\)
(b) Find the area of R.
(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y = 1.

▶️Answer/Explanation

Ans:

(a)

f(x) = 8x3               \(f\left ( \frac{1}{2} \right ) = 8\left ( \frac{1}{8} \right )=1\)        point of tangency : \(\left ( \frac{1}{2}, 1 \right )\)

f'(x) = 24x2          \(f’\left ( \frac{1}{2} \right )= 24 . \frac{1}{4}=6\)

y = 6x + b                                                              The tangent line to the graph of f

\(1 = 6\left ( \frac{1}{2} \right )+b\)          at \(x = \frac{1}{2}\)  is y = 6x-2.

1 = 3 + b

b = -2

y = 6x -2

(b)

f(x)  = g(x)

8×3 = sin(πx)

x = 0 ,  \(\frac{1}{2}\)

\(R = \int_{0}^{\frac{1}{2}}\left [ 9(x)-f(x) \right ]dx = \int_{0}^{\frac{1}{2}}\left [ sin(\pi x)-8x^{3} \right ]dx=\frac{1}{\pi }\int_{0}^{\frac{1}{2}}sinu du – \int_{0}^{\frac{1}{2}}8x^{3}dx\)

\(= \frac{1}{\pi }(-cos(\pi x))_{0}^{\frac{1}{2}}-2x^{4}\) \(_{0}^{\frac{1}{2}}\)

\(= \frac{1}{\pi }(-cos(\frac{\pi }{2})+cos(01))-2\left ( \frac{1}{2} \right )^{4}+0\)

\(= \frac{1}{\pi }(1)-\frac{2}{16}\)

\(= \frac{1}{\pi }-\frac{1}{8}=\frac{8-\pi }{8\pi }\)

(c)

\(\pi \int_{0}^{\frac{1}{2}}\left [ \left ( 1-f(x) \right )^{2}-\left ( 1-9(x) \right )^{2} \right ]dx\)

Scroll to Top