Home / AP Calculus BC 1.3 Estimating Limit Values from Graphs Study Notes

AP Calculus BC 1.3 Estimating Limit Values from Graphs Study Notes

AP Calculus BC 1.3 Estimating Limit Values from Graphs Study Notes - New Syllabus

AP Calculus BC 1.3 Estimating Limit Values from Graphs Study Notes- New syllabus

AP Calculus BC 1.3 Estimating Limit Values from Graphs Study Notes – AP Calculus BC-  per latest AP Calculus BC Syllabus.

LEARNING OBJECTIVE

  •  Estimating Limit  Values from Graphs

Key Concepts: 

  • Estimating Limits from Graphs and Understanding One-Sided Limits

AP Calculus BC-Concise Summary Notes- All Topics

Estimating Limits from Graphs and Understanding One-Sided Limits

Estimating Limits from Graphs and Understanding One-Sided Limits

The graph of a function provides a visual way to estimate limits. From the graph, you can identify how the function behaves as \( x \) approaches a particular value from the left or from the right.

This leads to the concepts of Left-Hand Limit (LHL) and Right-Hand Limit (RHL).

Definitions:

Left-Hand Limit (LHL):

\( \lim_{x \to a^-} f(x) \) is the value the function approaches as \( x \) approaches \( a \) from the left (smaller values of \( x \)).

Right-Hand Limit (RHL):

\( \lim_{x \to a^+} f(x) \) is the value the function approaches as \( x \) approaches \( a \) from the right (larger values of \( x \)).

The two-sided limit \( \lim_{x \to a} f(x) \) exists if and only if the LHL and RHL both exist and are equal.

Limits at Infinity (One-Sided):

 

  • \( \lim_{x \to \infty} f(x) \): Describes the behavior of \( f(x) \) as \( x \) grows very large (to the right on the graph).
  • \( \lim_{x \to -\infty} f(x) \): Describes the behavior of \( f(x) \) as \( x \) becomes very negative (to the left on the graph).
  • These limits are often used to identify horizontal asymptotes.

Key Observations from Graphs:

  • If the graph approaches the same height from both sides near \( x = a \), the limit exists.
  • If the left and right behaviors differ, the two-sided limit does not exist, but one-sided limits may exist individually.
  • If the graph goes to infinity or oscillates near \( x = a \), the limit does not exist.

Example :

From the graph, as \( x \) approaches 2 from both sides, \( f(x) \) approaches 5.

Estimate \( \lim_{x \to 2} f(x) \), \( \lim_{x \to 2^-} f(x) \), and \( \lim_{x \to 2^+} f(x) \).

▶️ Answer/Explanation

The graph shows that from the left and right, the function approaches 5.

\( \lim_{x \to 2^-} f(x) = 5 \)

\( \lim_{x \to 2^+} f(x) = 5 \)

Since both one-sided limits are equal, the two-sided limit exists: \( \lim_{x \to 2} f(x) = 5 \).

Example:

From the graph, as \( x \) approaches 3 from the left, \( f(x) \) approaches 4. From the right, it approaches 7.

Does \( \lim_{x \to 3} f(x) \) exist?

▶️ Answer/Explanation

\( \lim_{x \to 3^-} f(x) = 4 \) and \( \lim_{x \to 3^+} f(x) = 7 \).

Since they are not equal, the two-sided limit does not exist. However, both one-sided limits exist individually.

Example:

The graph of \( f(x) = \frac{1}{x} \).

  

Estimate \( \lim_{x \to \infty} f(x) \) and \( \lim_{x \to -\infty} f(x) \).

▶️ Answer/Explanation

As \( x \to \infty \), \( f(x) = \frac{1}{x} \to 0^+ \).

As \( x \to -\infty \), \( f(x) = \frac{1}{x} \to 0^- \).

So both limits exist, and the horizontal asymptote is \( y = 0 \).

Example:

The graph of the piecewise function is given as:

\(f(x) = \begin{cases} 3x, & x < 0 \\ 12 – 2x, & x \ge 0 \end{cases} \)

 

Using the graph, find:

  1. \( \lim_{x \to 0^-} f(x) \)
  2. \( \lim_{x \to 0^+} f(x) \)
  3. Does \( \lim_{x \to 0} f(x) \) exist?
▶️ Answer/Explanation

(a)For \( x < 0 \), \( f(x) = 3x \). As \( x \to 0^- \), \( f(x) \to 3(0) = 0 \).

\( \lim_{x \to 0^-} f(x) = 0 \).

(b) For \( x \ge 0 \), \( f(x) = 12 – 2x \). As \( x \to 0^+ \), \( f(x) \to 12 – 2(0) = 12 \).

\( \lim_{x \to 0^+} f(x) = 12 \).

(c)  LHL = 0 and RHL = 12. Since they are not equal, \( \lim_{x \to 0} f(x) \) does not exist.

More Workout Examples

Exercises – Calculating Limits Using the Limit Laws
Multiple Choice Questions

Question

  •  \(\underset{x\rightarrow \pi /3}{lim}\frac{sin\left ( \frac{\pi }{3} -x\right )}{( \frac{\pi }{3} -x)}=\)

(A) −1                (B) 0                (C) \(\frac{\sqrt{3}}{2}\)                (D) 1

▶️Answer/Explanation

Ans:

1. D

Question

  • \(\underset{x\rightarrow 0}{lim}\frac{sin3x}{sin2x}=\)

(A) \(\frac{2}{3}\)                (B) 1                (C) \(\frac{3}{2}\)                (D) nonexistent

▶️Answer/Explanation

Ans:

2. C

Question

  • \(\underset{x\rightarrow 0}{lim}\frac{\sqrt{4+x-2}}{x}=\)

(A) \(\frac{1}{8}\)                (B) \(\frac{1}{4}\)                (C) \(\frac{1}{2}\)                (D) nonexistent

▶️Answer/Explanation

Ans:

3. B

Question

  • \(\underset{x\rightarrow 1}{lim}\frac{\sqrt{3+x-2}}{x^{3}-1}=\)

(A) \(\frac{1}{12}\)                (B) \(\frac{1}{6}\)                (C) \(\sqrt{3}\)                (D) nonexistent

▶️Answer/Explanation

Ans:

4. A

Question

  •  \(\underset{θ\rightarrow 0}{lim}\frac{θ+θ cosθ}{sin θ cos θ}=\)

(A) \(\frac{1}{4}\)                (B) \(\frac{1}{2}\)                (C) 1               (D) 2

▶️Answer/Explanation

Ans:

5. D

Question

  • \(\underset{x\rightarrow 0}{lim}\frac{tan 3x}{x}=\)

(A) 0               (B) \(\frac{1}{3}\)                (C) 1               (D) 3

▶️Answer/Explanation

Ans:

6. D

Question

  • \(\underset{x\rightarrow 3}{lim}\frac{\frac{1}{x}-\frac{1}{3}}{x-3}=\)

(A) \(-\frac{1}{9}\)               (B) \(\frac{1}{9}\)                (C) -9               (D) 9

▶️Answer/Explanation

Ans:

7. A

Free Response Questions

Question

  •  If \(\underset{x\rightarrow 0}{lim}\frac{\sqrt{2+ax-\sqrt{2}}}{x}=\sqrt{2}\) what is the value of a ?
▶️Answer/Explanation

Ans:

8. 4

Question

  •  Find \(\underset{h\rightarrow 0}{lim}\frac{f\left ( x+h \right )-f\left ( x \right )}{h},\) if \(f\left ( x \right )=\sqrt{2x+1}\).
▶️Answer/Explanation

Ans:

9. \(\frac{1}{\sqrt{2x+1}}\)

Question

  •  Find \(\underset{x\rightarrow 0}{lim}\frac{f\left ( x \right )-g\left ( x \right )}{\sqrt{g\left ( x \right )+7}}\), if \(\underset{x\rightarrow 0}{lim}f\left ( x \right )=2\) and \(\underset{x\rightarrow 0}{lim}g\left ( x \right )=-3\).
▶️Answer/Explanation

Ans:

10. 5/2

Question

  • Find \(\underset{x\rightarrow \sqrt{3}}{lim}g\left ( x \right )\), if \(\underset{x\rightarrow \sqrt{3}}{lim} \frac{1}{x^{2}+g\left ( x \right )}=\frac{1}{5}\).
▶️Answer/Explanation

Ans:

11. 2

Scroll to Top