Home / AP Calculus AB and BC: Chapter 1 – Limits and Continuity : 1.3 – Calculating Limits Using the Limit Laws Study Notes

AP Calculus AB and BC: Chapter 1 – Limits and Continuity : 1.3 – Calculating Limits Using the Limit Laws Study Notes

Limit Laws

Let c and k be real numbers and the limits \(\underset{x\rightarrow c}{lim}f\left ( x \right )\) and \(\underset{x\rightarrow c}{lim}g\left ( x \right )\) exist.

Then

  1. \(\underset{x\rightarrow c}{lim}\left [ f\left ( x \right )\pm g\left ( x \right )\right ]=\underset{x\rightarrow c}{lim}f\left ( x \right )\pm \underset{x\rightarrow c}{lim}g\left ( x \right )\)
  2. \(\underset{x\rightarrow c}{lim}\left [ f\left ( x \right )\cdot g\left ( x \right )\right ]=\underset{x\rightarrow c}{lim}f\left ( x \right )\cdot \underset{x\rightarrow c}{lim}g\left ( x \right )\)
  3. \(\underset{x\rightarrow c}{lim}\left [ kf\left ( x \right ) \right ]=k\underset{x\rightarrow c}{lim}f\left ( x \right )\)
  4. \(\underset{x\rightarrow c}{lim}\frac{f\left ( x \right )}{g\left ( x \right )}=\frac{\underset{x\rightarrow c}{lim}f\left ( x \right )}{\underset{x\rightarrow c}{lim}g\left ( x \right )}\)
  5. \(\underset{x\rightarrow c}{lim}\left [ f\left ( x \right ) \right ]^{^{n}}=\left [ \underset{x\rightarrow c}{lim}f\left ( x \right ) \right ]^{n}\)
  6. \(\underset{x\rightarrow c}{lim}\sqrt[n]{f\left ( x \right )}=\sqrt[n]{\underset{x\rightarrow c}{lim}{f\left ( x \right )}}\)

Special Trigonometric Limits

  1. \(\underset{x\rightarrow 0}{lim}\frac{sin x}{x}=1\)
  2. \(\underset{x\rightarrow 0}{lim}\frac{1-cos x}{x}=0\)

Example 1

  • Find the limits.

(a) \(\underset{x\rightarrow 2}{lim}\frac{x^{2}+3x-10}{x-2}\)

(b) \(\underset{x\rightarrow 1}{lim}\frac{\sqrt{x+3-2}}{x-1}\)

▶️Answer/Explanation

Solution

Example 2 

  • Find the limits.

(a) \(\underset{x\rightarrow 0}{lim}\frac{sin 4x}{3x}\)

(b) \(\underset{x\rightarrow 0}{lim}\frac{tan x}{x}\)

(c) \(\underset{x\rightarrow \pi /4}{lim}\frac{tan x-1}{sinx-cosx}\)

▶️Answer/Explanation

Solution

Exercises – Calculating Limits Using the Limit Laws
Multiple Choice Questions

Question

  •  \(\underset{x\rightarrow \pi /3}{lim}\frac{sin\left ( \frac{\pi }{3} -x\right )}{( \frac{\pi }{3} -x)}=\)

(A) −1                (B) 0                (C) \(\frac{\sqrt{3}}{2}\)                (D) 1

▶️Answer/Explanation

Ans:

1. D

Question

  • \(\underset{x\rightarrow 0}{lim}\frac{sin3x}{sin2x}=\)

(A) \(\frac{2}{3}\)                (B) 1                (C) \(\frac{3}{2}\)                (D) nonexistent

▶️Answer/Explanation

Ans:

2. C

Question

  • \(\underset{x\rightarrow 0}{lim}\frac{\sqrt{4+x-2}}{x}=\)

(A) \(\frac{1}{8}\)                (B) \(\frac{1}{4}\)                (C) \(\frac{1}{2}\)                (D) nonexistent

▶️Answer/Explanation

Ans:

3. B

Question

  • \(\underset{x\rightarrow 1}{lim}\frac{\sqrt{3+x-2}}{x^{3}-1}=\)

(A) \(\frac{1}{12}\)                (B) \(\frac{1}{6}\)                (C) \(\sqrt{3}\)                (D) nonexistent

▶️Answer/Explanation

Ans:

4. A

Question

  •  \(\underset{θ\rightarrow 0}{lim}\frac{θ+θ cosθ}{sin θ cos θ}=\)

(A) \(\frac{1}{4}\)                (B) \(\frac{1}{2}\)                (C) 1               (D) 2

▶️Answer/Explanation

Ans:

5. D

Question

  • \(\underset{x\rightarrow 0}{lim}\frac{tan 3x}{x}=\)

(A) 0               (B) \(\frac{1}{3}\)                (C) 1               (D) 3

▶️Answer/Explanation

Ans:

6. D

Question

  • \(\underset{x\rightarrow 3}{lim}\frac{\frac{1}{x}-\frac{1}{3}}{x-3}=\)

(A) \(-\frac{1}{9}\)               (B) \(\frac{1}{9}\)                (C) -9               (D) 9

▶️Answer/Explanation

Ans:

7. A

Free Response Questions

Question

  •  If \(\underset{x\rightarrow 0}{lim}\frac{\sqrt{2+ax-\sqrt{2}}}{x}=\sqrt{2}\) what is the value of a ?
▶️Answer/Explanation

Ans:

8. 4

Question

  •  Find \(\underset{h\rightarrow 0}{lim}\frac{f\left ( x+h \right )-f\left ( x \right )}{h},\) if \(f\left ( x \right )=\sqrt{2x+1}\).
▶️Answer/Explanation

Ans:

9. \(\frac{1}{\sqrt{2x+1}}\)

Question

  •  Find \(\underset{x\rightarrow 0}{lim}\frac{f\left ( x \right )-g\left ( x \right )}{\sqrt{g\left ( x \right )+7}}\), if \(\underset{x\rightarrow 0}{lim}f\left ( x \right )=2\) and \(\underset{x\rightarrow 0}{lim}g\left ( x \right )=-3\).
▶️Answer/Explanation

Ans:

10. 5/2

Question

  • Find \(\underset{x\rightarrow \sqrt{3}}{lim}g\left ( x \right )\), if \(\underset{x\rightarrow \sqrt{3}}{lim} \frac{1}{x^{2}+g\left ( x \right )}=\frac{1}{5}\).
▶️Answer/Explanation

Ans:

11. 2

Scroll to Top